
classes User Contributed Perl Documentation classes

NAME
classes − conventional Perl 5 classes

VERSION
This document covers version 0.942

SYNOPSIS
 package MyClass;
 use strict ’subs’; no warnings;
 use classes
 new => ’classes::new_init’,
 class_attrs => [’Attr’],
 class_attrs_ro => { ’Read_Only_Attr’=>’yes’ },
 class_attrs_pr => { ’Priv_No_Accessors’=>’ok’ },
 attrs => [’attr’, ’_not_really_private’],
 attrs_ro => [’read_only_attr’],
 attrs_pr => [’attr_no_accessors’],
 class_methods => { ’Empty_Method’=>0 },
 methods => { abstract_method => ’ABSTRACT’ },
 throws => ’X::Usage’,
 exceptions => ’X::MyOwn’,
 needs => [’ThisClass’, ’ThatClass’],
 ;

Mixins:

 package MyMixinMod;
 use classes
 type=>’mixable’,
 ...
 ;

 package UsesMixins;
 use classes
 mixes => [’MyMixinMod’,’AnyPackage’],
 methods => {
 foo => ’SomePackage::a_foo_method’,
 },
 ...
 ;

Inheritance:

 use classes name=>’MySuper’, attrs=>[’color’];

 package ExtendsMySuper;
 use classes
 extends => ’MySuper’,
 ...
 ;

 package MultipleInheritance:
 use classes
 inherits => [’MySuper’, ’AnotherPackage’],
 ...
 ;

Package Methods (traditional export):

26−Sep−2006 1

classes User Contributed Perl Documentation classes

 package FunctionLib;
 use classes
 pkg_methods => [’foo’, ’bar’],
 ...
 ;

 use FunctionLib ’:all’;
 use FunctionLib qw(foo bar);

Dynamic Classes:

 package DynamicOne;
 use classes
 type => ’dynamic’,
 class_methods => [’add_attr’],
 ...
 ;

 sub add_attr {
 my ($class, $attr_name) = @_;
 classes attrs => [$attr_name];
 return $class;
 }

DECLARATION TAGS

 name => ’MyClass’,

 type => ’static’,
 type => ’dynamic’,
 type => ’mixable’,

 extends => ’SuperClass’,
 inherits => ’SuperClass’,
 inherits => [’Class1’, ’Class2’],

 mixes => ’Module’,
 mixes => { Module => ... },
 mixes => [
 ’Module1’,
 { Module2 => [’method1’, ...] },
 { Module3 => ’ALL’ | ’PUB’ | ’SAFE’ },
 { Module4 => qr/.../ },
],
 class_mixes => ...
 pkg_mixes => ...

 mixes_def => ’SAFE’ | ’ALL’ | ’PUB’,

 attrs => [’attr1’, ’attr2’],
 attrs_ro => ...
 attrs_pr => ...

 class_attrs => [’class_attr1’, ’class_attr2’],
 class_attrs => {
 class_attr1 => undef,
 class_attr2 => 100,
 class_attr3 => ’string’,
 class_attr4 => <ref>,
 },

26−Sep−2006 2

classes User Contributed Perl Documentation classes

 class_attrs_ro => ...
 class_attrs_pr => ...

 unqualified => 1,
 unqualified => 0,

 noaccessors => 1,
 noaccessors => 0,

 justahash => 1, # unqualified + noaccessors
 justahash => 0, # unqualified + noaccessors

 methods => [’method1’, ’method2’],
 methods => {
 method1 => ’method1’,
 method2 => ’local_method’,
 method3 => ’Extern::library::method’,
 method4 => ’ABSTRACT’,
 method5 => <false> | ’EMPTY’,
 method6 => sub { ... } | \&some::method,
 },
 class_methods => ...
 pkg_methods => ...

 new => ’new’,
 new => ’classes::new_args’,
 new => ’classes::new_only’,
 new => ’classes::new_init’,
 new => ’classes::new_fast’,
 new => ’MyModule::new_method’,

 init => ’initialize’,
 init => ’classes::init_args’,
 init => ’MyModule::initialize’,

 clone => ’clone’,
 clone => ’classes::clone’,
 clone => ’MyModule::clone’,

 dump => ’classes::dump’,

 needs => ’SomeClassModule’,
 needs => [’SomeClassModule’, ’SomeOtherClass’],

 throws => ’X::Usage’,
 throws => [’X::Usage’],

 exceptions => ’X::Doh’,
 exceptions => [
 ’X::Ouch’,
 ’X::NoWay’,
 { name => ’X::FileOnFire’, attrs=>[’file’] },
],
 exceptions => { name => ’X::FileOnFire’, attrs=>[’file’] },

 base_exception => ’X::OtherClass’,
 base_exception => ’X::classes’,
 base_exception => {
 name => ’X::BaseException’,
 extends => ’X::Whatever’,

26−Sep−2006 3

classes User Contributed Perl Documentation classes

 },

 def_base_exception => ’X::classes’,

COMMON METHODS

 my $object = MyClass−>new;
 my $object = MyClass−>new(attr1=>1);
 my $object = MyClass−>new({ attr1=>1 });

 $object−>initialize;
 $object−>initialize(attr1=>1);
 $object−>initialize({ attr1=>1 });

 my $deep_clone = $object−>clone;

 $object−>dump;
 MyClass−>dump;

ACCESSOR METHODS

 my $value = MyClass−>get_My_Class_Attr;
 my $value = $object−>get_my_attr;

 MyClass−>set_My_Class_Attr(7);
 $object−>set_my_attr(7);

AUTOMATIC

 $self−>{$ATTR_foo}
 $$CLASS_ATTR_foo

 MyClass−>DECL;
 $object−>DECL;
 $MyClass::DECL;

 MyClass−>MIXIN;
 $object−>MIXIN;
 $MyClass::MIXIN;

 MyClass−>CLASS;
 $object−>CLASS;
 $MyClass::CLASS;

 MyClass−>SUPER; # $ISA[0]
 $object−>SUPER; # $ISA[0]
 $MyClass::SUPER;

 $classes::PERL_VERSION

UTILITY METHODS

 MyClass−>classes::dump;
 $object−>classes::dump;
 $any_scalar−>classes::dump;
 ... −>classes::dump($handle);
 ... −>classes::dump(\$buffer);

 classes::dump;
 classes::dump(MyClass);
 classes::dump($object);
 classes::dump([’any’, ’scalar’, ’really’]);

 classes::load MyClass;

26−Sep−2006 4

classes User Contributed Perl Documentation classes

 classes::load MyModule;
 classes::load MyPackage;

 MyClass−>classes::set(My_Class_Attr=>1);
 $object−>classes::set(my_attr=>1);

 my $value = MyClass−>classes::get(’My_Class_Attr’);
 my $value = $object−>classes::get(’my_attr1’);

 my $string = MyClass−>classes::sprintf(’%s’, ’My_Class_Attr’);
 my $string = $object−>classes::sprintf(’%s’, ’my_attr1’);

 MyClass−>classes::printf(’%s’, ’My_Class_Attr’);
 $object−>classes::printf(’%s’, ’my_attr1’);

 my $id = $object−>classes::id;

EXCEPTIONS

 X::classes
 X::classes::traceable
 X::AttrScope
 X::Empty
 X::InvalidName
 X::NameUnavailable
 X::NotPkgMethod
 X::MethodNotFound
 X::Unimplemented
 X::Usage
 X::Undefined

See X::classes, X::classes::traceable, classes::Throwable

DESCRIPTION
A simple, stable, fast, and flexible way to use conventional Perl 5 classes in scripts, rapid prototypes, and
full−scale applications.

This reference document covers syntax only. See the following for more:

classesoop
Introductory primer of concepts, ideas and terms from object oriented programming without any
particular implementation specifics in mind.

classestut
List of included tutorials aimed at taking a beginning Perl programmer from the basics to advanced
techniques of object oriented programming with classes.

classescb
Cookbook collection of specific tasks and examples with lots of useable code.

classesfaq
Questions and answers about support, design decisions, justification, motivation, and other hype.

DECLARATION TAGS
Declaration tags are passed to use classes at compile time or to the classes function at run time. All
tags are optional depending on the context. Some have default values. Tags with undefined or otherwise
negative values are usually ignored. A declaration representing the class is always available in a special
DECL meta attribute best displayed with classes::dump.

Tag descriptions are ordered as you may expect to find them in a declaration.

26−Sep−2006 5

X::classes
X::classes::traceable
classes::Throwable

classes User Contributed Perl Documentation classes

name
Name of the class to define. If omitted will use the implied name of the calling package—including
main, (which is just another class). Name must be valid Perl package name.

See: perlmod, perlobj

type Specifies the type of classes usage:

static
Default. Indicates a class that is not going to change during its run time life:

 Does not import the classes function

 Defines and initializes declaration DECL

 Defines the CLASS constant

 Defines the SUPER method

mixable
Same as static but indicates the class/module/package can be used as a mixin. Like static
a mixable can be a stand−alone class or not (unlike some other languages that support mixins).
The attributes and methods declared in a mixable are "mixed into" other classes that use the
mixes tag. The result is something between inheritance and having defined everything
originally in the receiving classes.

Calls to the mixed in methods respond mostly as if they were inherited, they "see" functions and
variables defined within the package in which mixable was declared. The only exception to
this is the special $ATTR_foo and $CLASS_ATTR_foo keys which behave as expected
pointing to the mixin from which they came. To help keep these straight they are included in the
special MIXIN table along with every method that has been mixed in.

WARNING: Every object or class method., but not necessarily function, used by any declared
object or class method in a mixable must also be declared in order for the declared method to
work. Consider $self−>_next_one called from a declared mixable method. See Can’t
locate object method under TROUBLESHOOTING for more.

Strictly speaking a mixin is not inherited. The special @ISA array is not updated and the
normally inherited UNIVERSAL−>isa method returns false if checked for the name of the
mixin. Such an equivalent is not practical when dealing with mixins. Use MIXIN to assist with
introspection if needed. It contains every method not from that immediate class and the package
it came from.

See: mixes, $MIXIN, $DECL,

dynamic
Indicates a class that can be created or redefined in some way at run time. dynamic classes
behave exactly as static classes except they also import the classes function into the class
itself allowing it to be used at run time to add to or redefine some part of the class.

extends
Declares single class to extend that will be searched out of @INC and loaded exactly like the base
pragma. Cannot be included in the same declaration with inherits.

Choose mixes over extends where possible.

Throws: X::InvalidName, X::Usage

See: base, @INC in perlvar, SUPER

26−Sep−2006 6

classes User Contributed Perl Documentation classes

inherits
Same as extends but for one or more classes (multiple inheritance).

SUPER will refer to the first inherited class. This tag cannot be included in the same class declaration
as extends.

Choose mixes over inherits where possible.

See: SUPER

mixes
"Mixes in" methods and attributes from another class or package. Modules are loaded if needed. The
meta attributes $DECL and $MIXIN are updated.

Behavior differs depending on what is being mixed in.

If use classes type=>’mixable’ (see type) was used to declare the mixin then all of the
following from the declaration are mixed in:

 methods
 class_methods
 pkg_methods
 attrs
 attrs_ro
 class_attrs
 class_attrs_ro

For public attributes the special associated attribute key name strings are also mixed in (ex:
$ATTR_foo, $CLASS_ATTR_foo, see attrs).

Everything else is seen as a simple package, a collection of methods or functions which might be a
class declared with use classes (not type mixable), a traditional Perl class, a function library or
any other package with subroutines. These can be selectively mixed in by name, regular expression, or
one of the following aliases:

SAFE
Default and safest. Matches any method name that is not all caps nor preceded with an
underscore.

ALL Matches any valid method name, including all caps and initial underscore except for the special:

 BEGIN CHECK INIT END
 CLONE
 CLASS SUPER DECL MIXIN

WARNING: Other special all caps perl subroutines will be imported when using ALL. This
includes DESTROY and AUTOLOAD if defined.

PUB
Matches any valid method name—including all caps—that does not begin with underscore
except for the same special names listed for ALL above.

You can change the default alias by adding the mixes_def tag.

When in doubt check the symbol table with classes::dump(\%MyClass::).

Throws: X::InvalidName, X::Usage

See: class_mixes, pkg_mixes, mixes_def, methods, class_methods, pkg_methods,
attrs, attrs_ro, class_attrs, class_attrs_ro, MIXIN, $MIXIN, classes::load,
perlre, perlref, perlmod, perlobj, AutoLoader

26−Sep−2006 7

classes User Contributed Perl Documentation classes

class_mixes
Exactly the same as mixes but as if class_methods were used instead of methods.

pkg_mixes
Exactly the same as mixes but as if pkg_methods were used instead of methods.

mixes_def
Sets the default mixes filter for all mixins in that same declaration. Set to SAFE by default.

attrs
Declares object attributes. Attribute names must begin with [a−zA−Z_] followed by zero or more
[a−zA−Z0−9_] characters.

Each attribute receives both a public pair of accessor methods which begin with set_ and get_,
unless specifically requested otherwise with noaccessors or justahash. A key variable of the
form $ATTR_foo is also added to the class for use within the class. Use this when referring to your
object attribute key since it observes things like unqualified. [It is a fraction of 1% slower
according to benchmarks. There are other more advanced reasons explained in classescb].

 $self−>{$ATTR_foo} = ’blah’;

TIP: Vim users can add this macro line to your .vimrc file or equivalent to create your attributes
quickly by typing the attribute name, escaping, then typing backslash (\a):

 map \a bi$self−>{$ATTR_<ESC>ea}

All attribute values must be scalars. References to arrays, hashes and blessed objects are scalars.

WARNING: In your overriden get_ accessor use classes::clone or otherwise return a clone of
attribute values that are references if you are concerned your class users might directly manipulate
your attribute by using the returned reference. Better yet, don’t make that attribute public, even as
read−only, and use other methods that operate on the attribute values instead.

The get_ accessor always return the current value of the attribute, which is undef until some value
is set. Initialize object attribute values from the new or initialize methods:

 package MyClass;
 use classes
 new => ’new’,
 attrs => [’color’],
 ;

 sub new {
 my $class = shift;
 my $self = {
 $ATTR_color => ’chartreuse’,
 };
 bless $self, $class;
 return $self−>classes::init_args(@_);
 }

 package main;
 my $object = MyClass−>new;
 print $object−>get_color; # chartreuse
 $object−>set_color(’blue’);
 print $object−>get_color; # blue

Or, if you intend to "recycle" and reinitialize existing objects rather than throwing them away and
creating new ones:

26−Sep−2006 8

classes User Contributed Perl Documentation classes

 package MyClass;
 use classes
 new => ’classes::new_init’,
 attrs => [’color’],
 ;

 sub initialize {
 my $self = shift;
 $self−>{$ATTR_color} = ’chartreuse’;
 return $self−>classes::init_args(@_);
 }

 package main;
 my $object = MyClass−>new;
 print $object−>get_color; # chartreuse
 $object−>set_color(’blue’);
 print $object−>get_color; # blue

NOTE: The classes pragma follows the Perl best practice of adding the accessor prefixes (set_
and get_) to increase clarity, improve performance, catch bugs at compile time, and reduce the risk of
attribute methods stomping on other methods. Attibute names can even be all capitals or other reserved
names because the accessor method prefix prevents name collision.

WARNING: The set_ accessor (mutator) must always return void (return with no arguments).
The return value of a set_ method should never be checked or used for anything. Throw and catch
exceptions to handle bad values, etc.

 sub set_color { $_[0]−>{$ATTR_color} = ’my:’. $_[1]; return }

Throws: X::Usage, X::InvalidName, X::classes::AttrAlreadyPublic

See: attrs_ro, class_attrs, class_attrs_ro, unqualified, initialize, perlsub,
return in perldoc

attrs_ro
Same as attrs but only get_ public accessor defined.

However, if an inherited read−write attribute with the same name is detected a read−only set_ public
accessor is defined that does nothing more than throw a X::classes::ReadOnly exception.

WARNING: Beware of leaving behind custom overriden public set_ accessors when changing a
read−write attribute (attrs) to read−only (attrs_ro).

attrs_pr
Same as attrs but no public accessors are defined at all. The $ATTR_foo string is still created
within the declaring class. These private/protected attributes are not inherited with extends,
inherits, or use base since they have no accessor methods to inherit.

However, the object attribute hash key $ATTR_foo is mixed in if the attribute is in a explicitely
mixable module allowing $self−>{$ATTR_foo} from within the mixing class. This makes
refactoring mixins from class code very easy since methods can literally be cut and paste without
modification.

unqualified
Sets internal use of unqualified attribute key names, which is usually a bad idea unless you really know
what you are doing since classes could inadvertently stomp over each other’s internal keys. Set to 1 to
cause the internal object hash ref to not have each key prefixed with <CLASS>::.

NOTE: Use the $ATTR_foo and $CLASS_ATTR_foo key variables containing the corresponding
names in order to avoid changing class code during refactoring. Methods can be cut and paste often
without modification by following this convention. See attrs and class_attrs for more about

26−Sep−2006 9

classes User Contributed Perl Documentation classes

this.

noaccessors
Disables creation of set_ and get_ accessor methods for object attributes expecting them to be set
directly. Usually used in conjuction with unqualified. If so, consider setting justahash instead.

justahash
Same as unqualified, noaccessors, and new=’classes::new_fast’ combined. Great for POPOs
(plain old perl objects) that are first hashes that happen to have methods and class attributes associated
with them. Objects from a class with this declaration fully expect to have their "internal" hash ref
accessed directly.

class_attrs
Same as attrs but for attributes with class scope. In addition class attributes can be declared with
initial values.

Class attributes declared and defined with the classes pragma behave like most OO programmers
expect; changing a class attribute value anywhere changes it for all objects from that class as well as all
objects from any class that inherits or mixes it in. Classes wishing to take over the class attribute must
redeclare it (thereby overriding its accessors).

WARNING: This behavior is unlike Class::Data::Inheritable which obtusely allows any class to take
over a "class attribute" by simply setting its value.

Class attributes are implemented as package variables. A key variable containing the qualified name of
the attribute is available in the $CLASS_ATTR_foo form. Use it within the class to refer to class
attribute package variables (with strict ’vars’ off of course):

 no strict ’refs’;
 sub set_Color { $$CLASS_ATTR_color = $_[1]; return }

TIP: Vim users can add the following macro line to their .vimrc to quickly create this by typing the
name of the class attribute, then escape, then backslash capital A (\A):

 map \A bi$$CLASS_ATTR_<ESC>ea

The following are identical within the class. Pick the one you prefer, but keep in mind that if your class
package name changes, you might have a lot of find and replace to do on your class:

 $MyClass::color
 ${__PACKAGE__.’::color’}
 ${CLASS.’::color’}
 ${"$CLASS\::color"}
 ${$CLASS_ATTR_color}
 $$CLASS_ATTR_color

WARNING: Don’t attempt to initialize a class attribute value during during new or initialize since
it blows away any changes to the class attribute over the previous life of the class affecting all its
derived classes. Provide an initial value in the hash ref form of the class_attrs declaration:

 class_attr => {
 foo => ’initial value’,
 },

class_attrs_ro
Same as class_attrs but no set_ accessor like attrs_ro.

class_attrs_pr
Same as class_attrs but private (no accessors) like attrs_pr.

26−Sep−2006 10

Class::Data::Inheritable

classes User Contributed Perl Documentation classes

methods
Declares member methods (more strictly, "operations") and the actual methods to which they refer.
Usually the two will be the same, which seems redundant and is the default for the ARRAY ref form,
but the actual method may refer to any method in any class, module, or package. Like mixes the
module containing the external method will be loaded if it has not been.

The following special anonymous methods are also available:

ABSTRACT
Assigns a nearly empty anonymous method that will throw an X::Unimplemented exception
if called before being overriden. This is useful for defining an abstract class or interface which
expects to have methods mixed in or inherited to realize the abstract ones.

EMPTY
<false>

Assigns an empty anonymous method sub {}. Useful for nullifying a method without breaking
the interface.

Method values can also be CODE refs with the disadvantage of only appearing as CODE in the
declaration DECL instead of the local or qualified method name.

Use methods, class_methods, or pkg_methods instead of mixes if you only need to pull in a
few specific methods.

Per perlstyle guidelines, name your public methods with an initial lowercase letter. Join multiword
methods with underscores. Begin your private methods with an underscore, if you declare them at all.

Throws: X::Usage, X::InvalidName,

See: class_methods, pkg_methods, mixes, extends, inherits, perlstyle

class_methods
Same as methods but with class scope. However, since perl currently makes no distinction there is no
difference between this tag and methods other than the class_methods section of the declaration
DECL.

Avoid bimodal methods that can be called from both a class or object. You cannot declare a class and
object method with the same name, (although should you wish you could declare a method with the
same name as an attribute because of the attribute accessor prefixes set/get).

See: methods, pkg_methods

pkg_methods
Package methods are just functions. Using this tag is optimized shorthand for what you might do using
the Exporter module’s EXPORT_OK hash. Package methods are automatically available for import
on request:

 package MyPackage;
 use classes pkg_methods=>[’ini2hash’, ’hash2ini’];

 package main;
 use MyPackage ’ini2hash’;
 my $hash = ini2hash($ini);

Or, use the special ’:all’ tag:

 use MyPackage ’:all’;
 my $hash = ini2hash($ini);
 my $ini = hash2ini($hash);

Under the hood the import routine added to your package is a slimmed down equivalent to what
would be added by the Exporter module. Obviously you can override the automatic import with

26−Sep−2006 11

classes User Contributed Perl Documentation classes

your own if you want to do something fancier with your pkg_methods when they are requested.

Unlike class_methods and methods, pkg_methods do not expect a first argument to be a class
or object reference.

See: methods, class_methods, pkg_mixes

needs
Declares class modules, or just packages, that are needed by the class for aggregation or whatever.
Really just shorthand for writing out a separate use line for each but with the benefit of including the
dependencies in the declaration of the class and making your class preamble much cleaner.

Obviously if it is more than a simple class package you need you will need a separate use line but
these likely don’t belong in a class declaration anyway since they usually represent expansions to the
Perl function set rather than expansions to your class. If you need to import one or more specific
methods, consider declaring them as mixed in methods or just fully qualify your calls to them rather
than importing.

throws
Declares exceptions that are thrown by the class but defined elsewhere. Loads the module containing
the exception class if needed and found.

Use throws or exceptions to quickly add common exceptions to your shell scripts and
prototypes. Even if you are not using OO the base X::classes and X::classes::traceable classes, which
both mix in classes::Throwable, can be useful.

See: exceptions, EXCEPTIONS, classes::load

exceptions
Declares exception classes be automatically defined. Exception classes are listed by name or
declaration. By default each is a subclass of a automatically defined exception class matching the class
name of the form X::MyClass.

 package MyClass;
 use classes
 exceptions => [’X::MyException’,’X::MyOther’],
 ;

The above is exactly equivalent to the following long hand:

 classes
 { name=>X::MyClass, extends=>’X::classes::traceable’ },
 { name=>X::MyException, extends=>’X::MyClass’ },
 { name=>X::MyOther, extends=>’X::MyClass’ },
 ;

This preserves a convenient exception inheritance tree useful for catching exceptions in user code.

If the hash ref form is used and extends is omitted it is implied to be whatever the base exception
class is, by default the X::MyClass exception.

Use base_exception and def_base_exception to change the default base exception class
from the X::MyClass one dynamically created matching the class name.

Inheritance is strongly preferred over mixins for exceptions in order to trap them at different scope
levels.

TIP: To save further hassle declaring exception classes, use the X::classes::traceable
message and item generic attributes instead of declaring your own additional exception attributes
where practical.

Declaring an exception class that already appears to exist causes a X::NameUnavailable

26−Sep−2006 12

X::classes
X::classes::traceable
classes::Throwable

classes User Contributed Perl Documentation classes

exception to be thrown. To avoid this, change the declaration from exceptions to throws; or, use
a different name in the hash ref declaration of the exception and specify it as extending the one that
already exists; or, use a different name and just don’t worry about extending the other. X::Usage is a
good example of this. It is predeclared and used by classes itself and therefore available to every
class that uses the classes pragma.

WARNING: Always use the conventional X:: namespace in your exception class names. This
practice makes exceptions easy to spot in code while reducing name conflicts with other legitimate
classes and base exceptions. If you are really concerned with exception class namespace clashes that
are out of your control then add the full class name after the X:: to qualify it further, long for sure, but
safe from conflict. The following vim syntax hilighting macro makes spotting exceptions even easier
in the code. Add it to your ~/.vim/syntax/perl.vim:

 syn match perlOperator "X\:\:[a−zA−Z:_0−9]*"

See: throws, X::classes, X::classes::traceable, classes::Throwable, EXCEPTIONS,
DECLARATION TAGS

base_exception
Sets the base exception class to use for all exceptions declared. By default becomes a dynamically
create exception class matching the name of the class in the form X::MyClass. Applys only to the
specified or implied class associated with the declaration.

def_base_exception
Same as base_exception but applies to any and all declarations that use the classes pragma
from that time forward. Remember that this applies at compile time when using use classes.

TIP: If you never need or want traceablity in your exceptions set this to X::classes in some master
class to create the lightest exceptions possible. Then when debugging, you can change in the master
class back to X::classes::traceable or something like it.

new Declares the method to use for the standard new constructor. Shortcut for class_methods. The
following are equivalent:

 new => ’new’,
 class_methods => [qw(new)],
 class_methods => { new => ’new’},

 new => ’classes::new_only’,
 class_methods => { new => ’classes::new_only’ }

NOTE: Athough using the name new for the constructor is not required it is recommended and a
well−established best practice.

See also: new, clone, initialize, new_args, new_init, new_only, new_fast,
class_methods

init Declares the method to use for the standard initialize method. Shortcut for methods. The
following are equivalent:

 init => ’initialize’,
 methods => [qw(initialize)],
 methods => { initialize => ’initialize’},

 init => ’classes::init_args’,
 methods => { initialize => ’classes::init_args’ }

NOTE: Athough an initialize method is not required it is recommended for classes with objects
that would prefer to be (re)initialized than thrown away and replaced with a new one.

See also: initialize, new, new_init, init_args, methods

26−Sep−2006 13

X::classes
X::classes::traceable
classes::Throwable

classes User Contributed Perl Documentation classes

clone
Declares the method to use for the common clone method. Shortcut for methods. The following are
equivalent:

 clone => ’clone’,
 methods => [qw(clone)],
 methods => { clone => ’clone’},

 clone => ’classes::clone’,
 methods => { clone => ’classes::clone’ }

See also: clone, new, methods

dump
Declares the method to use for the dump method commonly defined during development to help with
debugging. The following are equivalent:

 dump => ’classes::dump’,
 methods => { dump => ’classes::dump’ }

See also: classes::dump, methods

METHODS
The following methods are either defined into the classes and mixins that are created using classes or are
available with the fully qualifed classes:: prefix and can be mixed into your code:

classes
classes::classes
classes::define
define

 use classes type=>’dynamic’;
 classes ... ;

 use classes ();
 classes::classes ... ;
 classes::define ... ;

Main classes command function. The dynamic (run time) variant of use classes. The
classes function is imported into classes with the type => ’dynamic’ to allow manipulation
of classes at run time. The classes::define function is an identical (symbol) alias to
classes::classes that is never exported and always available in its fully qualified form.

Throws: every exception listed under EXCEPTIONS

See: type

new The standard constructor method. Defined by most all classes but often missing from mixables.
When called from a class returns a new instance (object) of the class. classes::new_args and
classes::new_only are good defaults where no constructor customization is needed.
classes::new_init hands all arguments to an expected initialize method.
classes::new_fast expects a single hash ref as argument and uses it for the internal object
storage.

Use clone instead of new to create copies of objects.

Often you will need a custom new method to initialize object attributes. See attrs for a small
example of this.

Consider overriding initialize before new if your class’ objects may need to be reinitialized
rather than thrown away and replaced with new ones.

26−Sep−2006 14

classes User Contributed Perl Documentation classes

See: new, new_args, new_only, new_init, new_fast, initialize, class_methods,
perlobj, perlref

classes::new_args
new_args

Constructor implementation. Fulfills new. Creates object and then hands off with any arguments to
classes::init_args:

 sub new_args {
 my $class = shift;
 my $self = {};
 bless $self, $class;
 return $self−>classes::init_args(@_);
 }

See: init_args, new, new_init, new_only, new_fast, class_methods

classes::new_only
new_only

Constructor implementation. Fulfills new. Ignores any arguments (since it does not call the initializer):

 sub new_only { return bless {}, $_[0] }

See: new, new_args, new_init, new_fast, class_methods

classes::new_init
new_init

Constructor implementation. Fulfills new. Creates object and then hands off with any arguments to
initialize:

 sub new_init {
 my $class = shift;
 my $self = {};
 bless $self, $class;
 return $self−>initialize(@_);
 }

See: new, new_args, new_only, new_fast, class_methods

classes::new_fast
new_fast

Fastest constructor implementation. Fulfills new. Expects a compatible hash ref as the first and only
argument. Blesses that ref into class.

 sub new_fast { return bless $_[1]||{}, $_[0] }

Useful when you have a hash that you absolutely trust and need the speed. Particularly useful when
’inflating’ thousands of record objects from parsed lines and the like and have every intention of
directly manipulating the internal hash ref rather than burdening it with accessors but still want to
associate that record with a class. In short, a good way to tack a class onto your structure with the least
amount of OO bloat.

NOTE: The only way faster to associate a hash with a class is to bypass any accessor altogether and
call bless on the hash. Using bless alone completely trusts that the class will never use the
constructor in any other way, which is a pretty big leap in most OO code.

See: new, new_only, new_init, class_methods

26−Sep−2006 15

classes User Contributed Perl Documentation classes

initialize
The initializer. Commonly defined by classes instead of a custom new constructor so that objects from
the class can be reinitialized rather than thrown away and recreated. Usually called by new constructor
to setup the initial object state including aggregations from other classes. classes::new_init
expects an initialize.

The initialize method always takes an initial self−reference to the object being initialized as the
first argument, the rest of the arguments are dependent on the class itself, but usually a hash and/or
hash ref of attribute keys and values are accepted. Usually new and initialize should accept the
same argument signature and initialize must always return the same self reference passed to it to
preserve the identify of the object.

See attrs and dump for examples.

See: init_args, new, new_init, new_only, methods

classes::init_args
init_args

Initializer implementation. Takes a hash or HASH ref as arguments—usually passed from the new
constructor—and uses the argument keys as attribute names setting each attribute value by calling the
corresponding accessor:

 # $object−>set_attr1(1) implied
 $object−>initialize(attr=>1);
 $object−>initialize({ attr=>1 });

Combined with a new constructor:

 my $object = MyClass−>new(attr1=>1);
 my $object = MyClass−>new({ attr1=>1 });

Here is the actual code for quick reference:

 sub init_args {
 my $self = shift;
 my $attrs = $_[0];
 $attrs = {@_} if ref $attrs ne ’HASH’;

 while (my ($attr, $value) = each %$attrs) {
 my $setter = $self−>can("set_$attr");
 $self−>$setter($value) if $setter;
 }

 return $self;
 }

NOTE: Dispatching to attribute accessor methods not only supports encapsulation but also is the only
reliable method of generically setting attributes during construction and initialization, despite the extra
subroutine call. This is because Perl 5 does not do any attribute inheritance, only method inheritance.

See: attrs, class_attrs

classes::clone
clone

When called from an object returns a new object with the current state of the original, a deep clone. No
clone method is defined by default, but it is recommended.

Use clone instead of a bimodal new:

 my $object = MyClass−>new; # good
 my $clone = $object−>clone; # good

26−Sep−2006 16

classes User Contributed Perl Documentation classes

 my $clone = $object−>new; # not so good

The classes::clone method can be mixed into your classes:

 clone => ’classes::clone’,

The classes::clone method is modeled after the Clone_PP and Clone modules to create the best
clone reasonably possible with Perl 5. It returns deeply cloned copies of the original objects, but makes
shallow copies of attributes that are globs, regx objects and anything other than the basic HASH,
ARRAY, SCALAR, and REF, which themselves are cleanly and recursively cloned. Attributes that are
objects are cloned by their primitive blessed ref type—not their own clone methods—and are then
blessed into the same class.

classes::clone can also serve as a standalone function for cloning structures besides objects:

 my $array = [’some’, {thing=>’a’}, \$little, qr/komplex/];
 my $cloned_array = classes::clone $array;

If you need to reference the actual classes::clone code consider perldoc −m classes.

Throws: X::Usage

See: Clone_PP, Clone,

classes::id
id Returns the numeric, unique memory address of the object (or any ref) that is passed. Shortcut to

Scalar::Util::refaddr:

 sub id { Scalar::Util::refaddr($_[0]) }

Useful when comparing clones in testing and what not:

 my $event = Event−>new;
 my $clone = $event−>clone;
 if ($event−>classes::id == $clone−>classes::id) {
 print ’come on, that is not a _real_ clone’;
 }

Can be combined with the CORE::time and/or the current process ID to make a pretty unique object
identifier for persistence and the like:

 package MyClass;
 use classes
 new => ’new’,
 attrs_ro => [’id’],
 ;

 sub new {
 my $class = shift;
 my $self = {};
 bless $self, $class;
 $self−>initialize;
 $self−>{$ATTR_id} = CORE::time . "−$$−" . $self−>classes::id;
 return $self;
 }

See: Scalar::Util/"refaddr"

classes::set
set A mutator dispatch method. Companion to classes::get. When called from an object or class sets

and returns a new value for a named attribute by calling (dispatching) the object’s setter/writer/mutator
method. The minimal speed loss for the dispatch pays for the flexibility of allowing attributes to be set
without knowing their names before the code is executed.

26−Sep−2006 17

Scalar::Util/"refaddr"

classes User Contributed Perl Documentation classes

 $crayon−>classes::set(’color’ => ’purple’);

Can be mixed into your class to give them public dispatchers:

 methods => { set => ’classes::set’ },

Here is the actual code for quick reference:

 sub set {
 my ($self, $name, $value) = @_;
 my $accessor = $self−>can("set_$name")
 || X::MethodNotFound−>throw("set_$name");
 return $self−>$accessor($value);
 }

Throws: X::MethodNotFound if the attribute was defined read−only or not defined at all.

classes::get
get The accessor dispatch method. Companion to classes::set. Returns the current value of the

named attribute but does not set a new value.

Here is the actual code for quick reference:

 sub get {
 my ($self, $name) = @_;
 my $accessor = $self−>can("get_$name")
 || X::MethodNotFound−>throw("get_$name");
 return $self−>$accessor;
 }

Throws: X::MethodNotFound if the attribute was not defined.

classes::sprintf
sprintf

Mixable object or class method that takes a standard sprintf FORMAT and a list of ATTRNAMES
and simply looks up the attribute values by their get_foo equivalents and returns a formatted string
with the values.

classes::printf
printf

Same as sprintf but prints the string instead of just returning it.

classes::dump
dump

Using Data::Dumper dumps a visual representation of a class, object, or any scalar to a handle
(STDERR by default) or string buffer.

NOTE: Be sure to use parens or indirect notation when dumping objects since context is
important—especially when dumping the self−referencing return value or most methods:

 $ini−>read−>classes::dump; # right
 classes::dump $ini−>read; # not what you would expect

Can also be mixed into your classes to give them their own dump methods:

 dump => ’classes::dump’,

Dumps the implied caller if no argument passed:

 package MyClass;
 classes::dump;

Dumping a class displays three things: the current declaration DECL, the current state of any

26−Sep−2006 18

Data::Dumper

classes User Contributed Perl Documentation classes

class_attrs and the list of any methods that have been mixed in. Dumping an object also displays
its internal hash ref:

 package MixMeSimple;
 sub mixed_in {’yes’};

 package MixMeDeclared;
 use classes
 type => ’mixable’,
 attrs => [qw(a_mixmedecl)],
 attrs_pr => [’private_attr’],
 class_attrs => [qw(ca_mixmedecl)],
 class_attrs_pr => { PrivateAttr=>’yep’ },
 methods => [qw(m_mixmedecl)],
 class_methods => [qw(cm_mixmedecl)],
 ;

 package main;
 use classes
 name => ’MySuper’,
 attrs => [’color’],
 new => ’classes::new_args’,
 ;

 use classes
 name => ’MyClass’,
 extends => ’MySuper’,
 new => ’classes::new_init’,
 init => ’classes::init_args’,
 throws => ’X::Usage’,
 exceptions => ’X::MyOwn’,
 mixes => [qw(MixMeSimple MixMeDeclared)],
 class_attrs => { Attr=>1 },
 class_attrs_ro => { Read_Only_Attr=>’yes’ },
 attrs => [’attr’],
 attrs_ro => [’read_only_attr’],
 class_methods => { Empty_Method=>0 },
 methods => { abstract_method=>’ABSTRACT’ },
 ;

 my $object = MyClass−>new(attr=>’ok’);
 $object−>set_color(’green’);
 $object−>classes::dump;

Produces:

 ########################### MyClass ############################

 $DECL1 = {
 ’attrs’ => [
 ’a_mixmedecl’,
 ’attr’
],
 ’exceptions’ => [
 ’X::MyOwn’
],
 ’class_attrs’ => {
 ’ca_mixmedecl’ => undef,

26−Sep−2006 19

classes User Contributed Perl Documentation classes

 ’Attr’ => 1
 },
 ’name’ => ’MyClass’,
 ’class_attrs_ro’ => {
 ’Read_Only_Attr’ => ’yes’
 },
 ’class_methods’ => {
 ’Empty_Method’ => ’EMPTY’,
 ’new’ => ’classes::new_init’,
 ’cm_mixmedecl’ => ’MixMeDeclared::cm_mixmedecl’
 },
 ’inherits’ => [
 ’MySuper’
],
 ’attrs_ro’ => [
 ’read_only_attr’
],
 ’methods’ => {
 ’mixed_in’ => ’MixMeSimple::mixed_in’,
 ’abstract_method’ => ’ABSTRACT’,
 ’initialize’ => ’classes::init_args’,
 ’m_mixmedecl’ => ’MixMeDeclared::m_mixmedecl’
 },
 ’attrs_pr’ => [
 ’private_attr’
],
 ’type’ => ’static’,
 ’class_attrs_pr’ => {
 ’PrivateAttr’ => ’yep’
 },
 ’throws’ => [
 ’X::Usage’
]
 };

 $MIXIN1 = {
 ’$ATTR_a_mixmedecl’ => ’MixMeDeclared’,
 ’$CLASS_ATTR_PrivateAttr’ => ’MixMeDeclared’,
 ’$ATTR_private_attr’ => ’MixMeDeclared’,
 ’initialize’ => ’classes’,
 ’get_ca_mixmedecl’ => ’MixMeDeclared’,
 ’cm_mixmedecl’ => ’MixMeDeclared’,
 ’set_a_mixmedecl’ => ’MixMeDeclared’,
 ’mixed_in’ => ’MixMeSimple’,
 ’get_a_mixmedecl’ => ’MixMeDeclared’,
 ’set_ca_mixmedecl’ => ’MixMeDeclared’,
 ’new’ => ’classes’,
 ’$CLASS_ATTR_ca_mixmedecl’ => ’MixMeDeclared’,
 ’m_mixmedecl’ => ’MixMeDeclared’
 };

 $CLASS_STATE1 = {
 ’Read_Only_Attr’ => ’yes’,
 ’ca_mixmedecl’ => undef,
 ’Attr’ => 1

26−Sep−2006 20

classes User Contributed Perl Documentation classes

 };

 $OBJECT_STATE1 = bless({
 ’MySuper::color’ => ’green’,
 ’MyClass::attr’ => ’ok’
 }, ’MyClass’);

Throws: X::Usage

classes::load
load Loads a module with use MyModule using use base compatibility, but without the @ISA

updates and fields stuff. Used internally by the classes pragma itself to load packages and
modules.

Throw a X::Empty exception (somewhat like Base class package Foo is empty error use base
throws) when no symbols whatsoever are found for the loaded module.

CLASS
$CLASS

Returns a constant (inlined subroutine) containing the class name. Exactly the same as __PACKAGE__
and literally stolen from CLASS module (Michael G. Schwern). Defined into anything that uses
classes.

DECL
$DECL

Returns a hash reference of the class declaration kept current as the class is altered at run time with
classes or classes::define.

WARNING: Do not directly alter the DECL hash. Take a copy if needed instead:

 my %own_decl = %$MyClass::DECL;
 my %own_decl = %$DECL;

See: example output of DECL from classes::dump method

SUPER
Returns the name of the super (parent) class in which it is defined ($<blessed_as>::ISA[0]).
This fills the gap left by the SUPER:: construct that only refers to the super class of the current
package. Without a SUPER that refers to the actual superclass mixes that deal with inheritance would
be much more difficult to code:

 package Parent;
 sub foo {’foo’};

 package MixMod;
 sub bar1 { shift−>SUPER−>foo };
 sub bar2 { shift−>SUPER::foo }; # BAD

 package MyClass;
 use classes extends=>’Parent’, mixes=>’MixMod’;
 print MyClass−>SUPER−>foo . "\n"; # foo
 print MyClass−>SUPER::foo . "\n"; # foo
 print MyClass−>bar1 . "\n"; # foo
 print MyClass−>bar2 . "\n"; # ERROR

See: SUPER

MIXIN
$MIXIN

Defined when the mixes tag is used. Contains a dynamically updated hash of mixed in method and
attribute names and the package and name from which they came. This is the only way to identify if a

26−Sep−2006 21

classes User Contributed Perl Documentation classes

method or attribute was mixed in rather than simply declared:

 package MyMixin;
 sub bar {’bar’};

 package MyClass;
 use classes
 mixes=>’MyMixin’,
 methods=>[’foo’],
 ;

 package main;
 print "bar is mixin\n" if MyClass−>MIXIN−>{bar};
 print "foo is mixin\n" if MyClass−>MIXIN−>{foo};

The MIXIN hash is displayed in the classes::dump output.

WARNING: Testing for defined $MIXIN is not sufficient since the ref will usually be defined
even if the HASH it refers to contains nothing. Use defined %$MIXIN instead.

See: mixes, classes::dump

classes::PERL_VERSION
PERL_VERSION

Constant referring to the current perl version ($]).

See: $] in perlvar

EXCEPTIONS
The classes pragma defines and uses the following exception classes that any code with use classes
can immediately use:

X::classes
Minimal base exception class. Base class of all other exception classes. See X::classes.

X::classes::traceable
Subclass of X::classes. Adds light traceability to similar to Exception::Class. Base class of
all other exception classes. See X::classes::traceable.

X::AttrScope
Thrown when somehow unexpectedly an attribute accessor is called where the attribute was initially
declared with greater scope and then redeclared with a more limited scope, ro or pr:

 package WideOpen;
 use strict ’subs’; no warnings;
 use classes
 type => ’mixable’,
 new => ’classes::new_args’,
 attrs => [’foo’],
 ;

 package MorePrivate;
 use strict ’subs’; no warnings;
 use classes
 mixes => ’WideOpen’,
 attrs_ro => [’foo’],
 ;

 sub do_something_involving_foo {
 my $self = shift;
 $self−>{$ATTR_foo} = ’something new’;

26−Sep−2006 22

X::classes
X::classes::traceable

classes User Contributed Perl Documentation classes

 return $self;
 }

 package main;
 my $o = MorePrivate−>new;
 $o−>do_something_involving_foo;
 print $o−>get_foo; # ok
 $o−>set_foo(’something’); # throws X::AttrScope

Even though the redeclaration causes the correct update to DECL the inherited accessor method is
overriden as a safety precaution. This is not a problem if the attribute with the same name was never
declared with greater scope in the first place since the public accessor (the setter in this case) won’t
exist, causing a different Perl compile−time error. See attrs for more.

X::Empty
Something was empty that shouldn’t be, a package being loaded, a variable, etc.

X::InvalidName
Class or attribute name is invalid.

X::NotPkgMethod
Attempt to import a package method detected where the method is not defined or defined as a class or
object method instead.

X::MethodNotFound
Accessor method not found when set or get dispatch methods are called.

X::Unimplemented
A call to an unimplemented ABSTRACT method is detected.

X::Usage
Any invalid syntax usage.

X::Undefined
Attribute value undefined.

See: X::classes, X::classes::traceable, classes::Throwable

TROUBLESHOOTING
See classesfaq

EXAMPLES
See classes::dump, classescb, classestut

SUPPORT

 SourceForge ’perl5class’ Project Site
http://sourceforge.net/projects/perl5class

Please submit any bugs or feature requests to this site.

 perl5class−usage mailing list
http://lists.sourceforge.net/lists/listinfo/perl5class−usage

 Search CPAN
http://search.cpan.org/dist/classes

 AnnoCPAN: Annotated CPAN documentation
http://annocpan.org/dist/classes

26−Sep−2006 23

X::classes
X::classes::traceable
classes::Throwable
http://sourceforge.net/projects/perl5class
http://lists.sourceforge.net/lists/listinfo/perl5class-usage
http://search.cpan.org/dist/classes
http://annocpan.org/dist/classes

classes User Contributed Perl Documentation classes

 CPAN Ratings
http://cpanratings.perl.org/d/classes

DEPENDENCIES
Dependencies have been all but left out to improve portability.

Perl 5.6.1 is required.

Scalar::Utils and CORE::time are required and supported since 5.6 and standard from 5.8.

Data::Dumper is required for classes::dump to work and has been part of Perl standard since pre 5.6.1.

SEE ALSO
classestut, classescb, classesfaq, X::classes, X::classes::traceable, classes::Throwable, classes::test

The object oriented Perl related pages:

perlobj, perlboot, perltoot, perltooc, perlbot, perlstyle

The object oriented modules that most influenced the creation of the classes pragma:

base, fields, CLASS, Class::Struct, Exception::Class, Clone, Clone::PP, Class::MethodMaker,
Class::MakeMethods, Class::Base, Class::Contract, Class::Accessor, Class::Meta, Class::Std,
Class::Data::Inheritable, Class::Maker

All the rest of the Class:: (and related) namespace on CPAN including, but by no means limited to, the
following:

Attribute::Deprecated, Attribute::Unimplemented, Class::Container, Class::Field, Class::Generate,
Class::HPL00::Class, Class::Inspector, Class::MOP, Clone::Clonable, Class::Class

AUTHOR
Robert S Muhlestein (rmuhle at cpan dot org)

ACKNOWLEDGEMENTS
The classes pragma was built from many other great modules and ideas with a lot of feedback and
testing. Here are a few specific individuals who directly or indirectly contributed to its creation:

Matthew Simon Cavalletto, Damian Conway, Derek Cordon, Ray Finch, A. (Pete) Fontenot, C. Garrett
Goebel, Erik Johnson, Jim Miner, Dave Rolsky, Matt Sargent, David Muir Sharnoff, Dean Roehrich,
Michael G Schwern, Casey West, David Wheeler

COPYRIGHT AND LICENSE
Copyright 2005, 2006 Robert S. Muhlestein (rob at muhlestein.net) All rights reserved. This module is free
software; you can redistribute it and/or modify it under the same terms as Perl itself. [See perlartistic.]

26−Sep−2006 24

http://cpanratings.perl.org/d/classes
Scalar::Utils
Data::Dumper
X::classes
X::classes::traceable
classes::Throwable
classes::test
Class::Struct
Exception::Class
Clone::PP
Class::MethodMaker
Class::MakeMethods
Class::Base
Class::Contract
Class::Accessor
Class::Meta
Class::Std
Class::Data::Inheritable
Class::Maker
Attribute::Deprecated
Attribute::Unimplemented
Class::Container
Class::Field
Class::Generate
Class::HPL00::Class
Class::Inspector
Class::MOP
Clone::Clonable
Class::Class

	classes
	NAME
	VERSION
	SYNOPSIS
	DESCRIPTION
	classesoop
	classestut
	classescb
	classesfaq

	DECLARATION TAGS
	name
	type
	static
	mixable
	dynamic
	extends
	inherits
	mixes
	SAFE
	ALL
	PUB
	class_mixes
	pkg_mixes
	mixes_def
	attrs
	attrs_ro
	attrs_pr
	unqualified
	noaccessors
	justahash
	class_attrs
	class_attrs_ro
	class_attrs_pr
	methods
	ABSTRACT
	EMPTY
	<false>
	class_methods
	pkg_methods
	needs
	throws
	exceptions
	base_exception
	def_base_exception
	new
	init
	clone
	dump

	METHODS
	classes
	classes::classes
	classes::define
	define
	new
	classes::new_args
	new_args
	classes::new_only
	new_only
	classes::new_init
	new_init
	classes::new_fast
	new_fast
	initialize
	classes::init_args
	init_args
	classes::clone
	clone
	classes::id
	id
	classes::set
	set
	classes::get
	get
	classes::sprintf
	sprintf
	classes::printf
	printf
	classes::dump
	dump
	classes::load
	load
	CLASS
	$CLASS
	DECL
	$DECL
	SUPER
	MIXIN
	$MIXIN
	classes::PERL_VERSION
	PERL_VERSION

	EXCEPTIONS
	X::classes
	X::classes::traceable
	X::AttrScope
	X::Empty
	X::InvalidName
	X::NotPkgMethod
	X::MethodNotFound
	X::Unimplemented
	X::Usage
	X::Undefined

	TROUBLESHOOTING
	EXAMPLES
	SUPPORT
	SourceForge 'perl5class' Project Site
	perl5class-usage mailing list
	Search CPAN
	AnnoCPAN: Annotated CPAN documentation
	CPAN Ratings

	DEPENDENCIES
	SEE ALSO
	AUTHOR
	ACKNOWLEDGEMENTS
	COPYRIGHT AND LICENSE

