
Advanced Perl DBI

Making data work for you

by Tim Bunce

July 2007 - DBI 1.58

Advanced DBI tutorial
© Tim Bunce

July 2007

2

Topical Topics

 Speed Speed Speed!
 Handling handles and binding values
 Error checking and error handling
 Transactions
 Architecture and Tracing
 DBI for the web
 Bulk operations
 Tainting
 Handling LONG/BLOB data
 Portability
 Gofer Proxy power and flexible multiplex
 What’s planned

Advanced DBI tutorial
© Tim Bunce

July 2007

3

Trimmed Topics and Tips

 Lack of time prevents the inclusion of ...
 Details of issues relating to specific databases and drivers

– (other than where used as examples of general issues)
– each driver would warrant a tutorial of its own!

 Non-trivial worked examples
 Handy DBIx::* and other DBI related modules
 … and anything I’d not finished implementing when this was written …

 But I hope you’ll agree that there’s ample information
 in the following ~110 slides…

 Tips for those attending the conference tutorial:
 Doodle notes from my whitterings about the ‘whys and wherefores’ on your

printed copy of the slides as we go along...

Advanced DBI tutorial
© Tim Bunce

July 2007

4

The DBI - What’s it all about?

 The Perl DBI defines and implements an interface to databases
 Plug-in driver modules do the database-specific work
 DBI provides default methods, functions, tools etc for drivers
 Not limited to the lowest common denominator
 Very mature. Continuous development after first release in 12th Oct 1994.

 The Perl DBI has built-in…
 Automatic error checking
 Detailed call tracing/debugging
 Flexible call profiling/benchmarking

 Designed and built for speed

Advanced DBI tutorial
© Tim Bunce

July 2007

5

DBI Module

Perl Application

DBD::OtherDBD::InformixDBD::Oracle

Oracle Server Informix Server Other Server

A picture is worth?

Speed Speed Speed!

What helps,what doesn't,
and how to measure it

Advanced DBI tutorial
© Tim Bunce

July 2007

7

Give me speed!

 DBI was designed for speed from day one
 DBI method dispatcher written in hand-crafted XS/C
 Dispatch to XS driver method calls is specially optimized
 Cached attributes returned directly by DBI dispatcher
 DBI overhead is generally insignificant

– So we'll talk about other speed issues instead ...

Advanced DBI tutorial
© Tim Bunce

July 2007

What do you mean by Speed?

 Which can transfer data between Europe and USA the fastest?:
A: Gigabit network connection.
B: Airplane carrying data tapes.

 Answer:
It depends on the volume of data.

 Throughput / Bandwidth
 Throughput is the amount of data transferred over a period of time.

 Latency / Response Time
 Latency is the time delay between the moment something is initiated, and the

moment one of its effects begins or becomes detectable.
 Latency is often more important than Throughput

 Reducing latency is often harder than increasing bandwidth 8

Advanced DBI tutorial
© Tim Bunce

July 2007

Streaming & Round-trips

 Which would be fastest?
A: 10MBit/sec connection to server in next room
B: 100MBit/sec connection to server in next city

 Answer:
It depends on the workload.

 Think about streaming and round-trips to the server
 SELECT results are streamed, they flow without per-row feedback.
 INSERT statements typically require a round-trip per row.

 Reduce round-trips, and try to do more on each one
 Stored procedures
 Bulk inserts

9

Advanced DBI tutorial
© Tim Bunce

July 2007

Do More Per Trip - Example

 Background: clients can set spending rate limits of X amount per Y seconds
 spend_limit table has fields: accural, debit_max, start_time, period

 Task:
 If time is after start_time + period

– then start new period : set start_time=now and accural=spend
– else accrue spend in current period : set accural = accural + spend

 Return flag to indicate if accrual was already greater than debit_max
 Minimize time table is locked

my $period_cond_sql = "UNIX_TIMESTAMP() > (UNIX_TIMESTAMP(start_time) + period)";

my $spend_limit_sth = $dbh->prepare_cached(qq{

 UPDATE spend_limit SET

 accrual = IF ($period_cond_sql,

 0 + ? + (0*LAST_INSERT_ID(0)),

 accrual + ? + (0*LAST_INSERT_ID(accrual>debit_max))

),

 start_time = IF ($period_cond_sql, NOW(), start_time)

 WHERE key=?

});
10

Advanced DBI tutorial
© Tim Bunce

July 2007

Latency is King

11

 Small changes can have big effects
 on busy systems with concurrent threads/processes
 can push you ‘over the edge’ or pull you back from it
 refer to queuing theory, for example:

– http://csdl.computer.org/comp/mags/ds/2006/01/o1001.pdf
– http://blogs.msdn.com/ricom/archive/2006/07/24/677566.aspx

 CPU time is a critical resource
 while waiting for I/O useful work is being done for the thread
 while waiting for CPU no useful work is being done
 it’s dead time

Advanced DBI tutorial
© Tim Bunce

July 2007

Cache, Cache, Cache!

 Caching is a fundamental performance technique
 Caching is applicable to all levels of an application
 Caching makes the world go round so fast, kind’a

 Cache whole pages (reverse proxies, web accelerators)
 Cache ready-made components of pages
 Cache results of queries that provide data for pages
 Cache simple lookups on client to simplify joins and reduce data volume
 Cache statement execution plan by using prepare()
 Cache prepared statement handles
 Cache database handles of those statement handles
 Cache (memoize) idempotent functions
 Cache common subexpressions in busy blocks

 High cache hit ratio is not necessarily a good sign.
 Measure response time under-load, mix-n-match methods, measure again

12

Advanced DBI tutorial
© Tim Bunce

July 2007

13

Performance 101

 Start at the beginning
 Pick the right database and hardware for the job, if you have the choice.
 To do that you need to understand the characteristics of

– the job, the databases, and the hardware
 Understand the performance trade-off’s in schema design.
 Worth a whole tutorial... but not this one.

 General tips
 Know all the elements that contribute to overall latency
 Latency has layers, just like onions (and Ogres). Dig in.
 Work close to the data to reduce round-trip x latency costs
 Proprietary bulk-load is almost always faster than Perl

 Don’t trust third-party benchmarks
 Too many variables. Measure for yourself. Focus on resonse time under load.
 Mix 'n Match techniques as needed

Advanced DBI tutorial
© Tim Bunce

July 2007

14

Prepare for speed

 “SELECT ...” - what happens in the server...
– Receive and parse and compile the SQL statement into internal form
– Get details for all the selected tables
– Check access rights for each
– Get details for all the selected fields
– Check data types in expressions
– Get details for the indices on all the fields in where/join clauses
– Develop an optimised query 'access plan' for best execution

 This can be an expensive process
– especially the 'access plan’ for a complex multi-table query

 prepare() - lets you cache all the work before multiple execute()’s
– for databases that support prepared statements

 Some databases, like MySQL v4, don't cache the information
– but have simpler and faster, but less powerful, plan creation

Advanced DBI tutorial
© Tim Bunce

July 2007

15

The best laid plans

 Query optimisation is hard
– Intelligent high quality cost based query optimisation is really hard!

 Know your optimiser
– Oracle, Informix, Sybase, DB2, SQL Server, MySQL etc. all slightly different.

 Check what it's doing
– Use tools to see the plans used for your queries - very helpful!

 Help it along
 Most 'big name' databases have a mechanism to analyse and store the key distributions of

indices to help the optimiser make good plans.
– Important for tables with ‘skewed’ (uneven) key distributions
– Beware: keep it fresh, old key distributions might be worse than none

 Some also allow you to embed 'hints' into the SQL as comments
– Beware: take it easy, over hinting hinders dynamic optimisation

 Write good SQL to start with!
– Worth another whole tutorial, but not this one.
– Poor SQL, and/or poor schema design, makes everything else I’m saying here pointless.

access

Advanced DBI tutorial
© Tim Bunce

July 2007

16

MySQL’s EXPLAIN PLAN

 To generate a plan:
EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

 The plan is described using results like this:
TABLE TYPE POSSIBLE_KEYS KEY KEY_LEN REF ROWS EXTRA
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC,ClientID,ActualPC ActualPC 15 et.EMPLOYID 52 where used
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Advanced DBI tutorial
© Tim Bunce

July 2007

17

Oracle’s EXPLAIN PLAN

 To generate a plan:
 EXPLAIN PLAN SET STATEMENT_ID = 'Emp_Sal’ FOR
 SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT * FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

 That writes plan details into a table which can be queried to yield results like this:
ID PAR Query Plan
--- --- --
 0 Select Statement Cost = 69602
 1 0 Nested Loops
 2 1 Nested Loops
 3 2 Merge Join
 4 3 Sort Join
 5 4 Table Access Full T3
 6 3 Sort Join
 7 6 Table Access Full T4
 8 2 Index Unique Scan T2
 9 1 Table Access Full T1

Advanced DBI tutorial
© Tim Bunce

July 2007

18

Advanced DBI tutorial
© Tim Bunce

July 2007

19

Changing plans (hint hint)

 Most database systems provide a way to influence the execution plan
 typically via ‘hints’

 Oracle supports a very large and complex range of hints
 Hints must be contained within special comments /*+ … */

	
 SELECT /*+ INDEX(table1 index1) */ foo, bar
	
 FROM table1 WHERE key1=1 AND key2=2 AND key3=3;

 MySQL has a very limited set of hints
 Hints can optionally be placed inside comments /*! … */

	
 SELECT foo, bar FROM table1 /*! USE INDEX (key1,key2) */
	
 WHERE key1=1 AND key2=2 AND key3=3;

 Use sparingly! Generally as a last resort.
 A hint may help now but later schema (or data) changes may make it worse.
 Usually best to let the optimizer do its job

.

Advanced DBI tutorial
© Tim Bunce

July 2007

20

Respect your server’s SQL cache

 Optimised Access Plan and related data can be cached within server
– Oracle: automatic caching, shared across connections, cache keyed by SQL.
– MySQL v5: explicit but hidden by DBD::mysql. Not shared, even within a connection.

 Compare do("insert … $id");

 with do("insert … ?", undef, $id);

 Without placeholders, SQL string varies each time
– so no matching statement can be found in the servers' SQL cache
– so time is wasted creating a new access plan
– the new statement and access plan are added to cache
– so the cache fills and other statements get pushed out
– on a busy system this can lead to ‘thrashing’ (churning of the query plan cache)

 Oracle now has a way to avoid/reduce this problem
– it can effectively edit the SQL to replace literal constants with placeholders
– but quality of the execution plan can suffer

 For MySQL do() always causes re-planning. Must use prepare() to reuse.

Advanced DBI tutorial
© Tim Bunce

July 2007

21

Hot handles

 Avoid using $dbh->do(…) in a speed-critical loop
 It’s usually creating, preparing and destroying a statement handle each time
 Use $sth = $dbh->prepare(…)and $sth->execute() instead

 Using prepare() moves work out of the loop
 Does as much preparation for later execute() as possible
 So execute() has as little work to do as possible

 For example… convert
 $dbh->do("insert … ?", undef, $_) for @id_list;
 into $sth = $dbh->prepare("insert … ?”)
 $sth->execute($_) for @id_list’

 This often gives a significant performance boost
– even where placeholders are emulated, such as DBD::mysql with MySQL 4.0
– because it avoids statement handle creation overhead

.

Advanced DBI tutorial
© Tim Bunce

July 2007

22

Sling less for speed

 while(@row = $sth->fetchrow_array) { }
 one column: 51,155 fetches per second
 20 columns: 24,032 fetches per second

 while($row = $sth->fetchrow_arrayref) { }
 one column: 58,653 fetches per second - approximately 12% faster
 20 columns: 49,390 fetches per second - approximately 51% faster

 while($row = shift(@$rowcache)
 || shift(@{$rowcache=$sth->fetchall_arrayref(undef, $max_rows)})) { }
 one column: 348,140 fetches per second - by far the fastest!
 20 columns: 42,128 fetches per second - now slower than fetchrow_arrayref!
 Why? Balance time saved making fewer calls with time spent managing more memory
 Do your own benchmarks to find what works best for your situations

 Notes:
 Tests used DBD::mysql on 100,000 rows with fields 9 chars each. $max_rows=1000;
 Time spent inside fetchrow_* method is ~0.000011s (~90,000 per second) on old slow cpu.

Advanced DBI tutorial
© Tim Bunce

July 2007

23

Bind those columns!

 Compare
while($row = $sth->fetchrow_arrayref) {

 print “$row->[0]: $row->[1]\n”;

}

 with
$sth->bind_columns(\$key, \$value);

while($sth->fetchrow_arrayref) {

 print “$key: $value\n”;

}

 No row assignment code!
 No column access code!
 ... just magic

Advanced DBI tutorial
© Tim Bunce

July 2007

24

Do more with less!

 Reduce the number of DBI calls
– The DBI is fast -- but it isn’t free!

 Using RaiseError is faster than checking return values
– and much faster than checking $DBI::err or $h->err

 Use fetchrow_* in preference to fetchall_*
– unless you want to keep all the rows for later
– if you do, then...

 Using fetchall_arrayref (or selectall_arrayref) is faster
– if using a driver extension compiled with the DBI’s Driver.xst wrapper (most are)
– because the loop is written in C and doesn’t make a method call per row

 Using fetchall_arrayref is possible for very large result sets
– the $max_rows parameter limits rows returned (and memory consumed)
– just add an outer loop to process the results in ‘batches’, or do it in-line:

$row = shift(@$cache)

 || shift @{$cache=$sth->fetchall_arrayref(undef, 1000)};

Advanced DBI tutorial
© Tim Bunce

July 2007

25

Speedy Summary

 Think about the big picture first
– Choice of tools, schema design, partitioning, latency, etc.

 Check the access plans for your statements
– Teach your database about any uneven key distributions

 Use placeholders - where supported
– Especially for any statements that will be executed often with varying values

 Replace do() in a loop
– with prepare() and execute()

 Sling less data for faster row fetching
– Or sling none per row by binding columns to perl variables

 Do more with less by using the DBI in the most efficient way
– Make fewer, better, DBI method calls

 Other important things to consider…
– your perl code, plus hardware, operating system, and database configuration etc.

-

Advanced DBI tutorial
© Tim Bunce

July 2007

26

Optimizing Perl - Some Tips

 Perl is fast, but not that fast...
 Still need to take care with apparently simple things in 'hot' code

– Function/method calls have significant overheads per call. Especially with args.
– Copying data also isn't cheap, especially long strings (allocate and copy)
– Perl compiles to 'op codes' then executes them in a loop...
– The more ops, the slower the code (all else being roughly equal).
– Try to do more with fewer ops. Especially if you can move loops into ops.

 Key techniques include:
– Caching at many levels, from common sub-expression elimination to web caching
– Functional programming: @result = map { … } grep { … } @data;
– Reduce method calls by pushing loops down to lower layers

 But don't get carried away... only optimize hot code, and only if needed
– Don't optimize for performance at the cost of maintenance. Learn perl idioms.
– Beware "Compulsive Tuning Disorder" - Gaja Krishna Vaidyanatha
– And remember that "Premature optimization is the root of all evil" - Donald Knuth

Profiling DBI Performance

Time flies like an arrow
(fruit flies like a banana)

Advanced DBI tutorial
© Tim Bunce

July 2007

28

How fast was that?

 The DBI has performance profiling built in

 Overall summary:
$ DBI_PROFILE=1 ex/profile.pl

DBI::Profile: 0.190639s 20.92% (219 calls) profile.pl @ 2006-07-24 15:47:07

 Breakdown by statement:
$ DBI_PROFILE=’!Statement’ ex/profile.pl

DBI::Profile: 0.206872s 20.69% (219 calls) profile.pl @ 2006-07-24 15:44:37

'' =>

 0.001403s / 9 = 0.000156s avg (first 0.001343s, min 0.000002s, max 0.001343s)

'CREATE TABLE ex_profile (a int)' =>

 0.002503s

'INSERT INTO ex_profile (a) VALUES (?)' =>

 0.193871s / 100 = 0.001939s avg (first 0.002119s, min 0.001676s, max 0.002251s)

'SELECT a FROM ex_profile' =>

 0.004776s / 108 = 0.000044s avg (first 0.000700s, min 0.000004s, max 0.003129s)

Advanced DBI tutorial
© Tim Bunce
August 2006

$ DBI_PROFILE='!Statement:!MethodName' ex/profile.pl
DBI::Profile: 0.203922s (219 calls) profile.pl @ 2006-07-24 15:29:29
'' =>
 'FETCH' =>
 0.000002s
 'STORE' =>
 0.000039s / 5 = 0.000008s avg (first 0.000019s, min 0.000002s, max 0.000019s)
 'connect' =>
 0.001336s

'CREATE TABLE ex_profile (a int)' =>
 'do' =>
 0.002324s

'INSERT INTO ex_profile (a) VALUES (?)' =>
 'do' =>
 0.192104s / 100 = 0.001921s avg (first 0.001929s, min 0.001520s, max 0.002699s)

'SELECT a FROM ex_profile' =>
 'execute' =>
 0.000082s
 'fetchrow_array' =>
 0.000667s / 101 = 0.000007s avg (first 0.000010s, min 0.000006s, max 0.000018s)
 'prepare' =>
 0.000122s
 'selectall_arrayref' =>
 0.000676s
 'selectall_hashref' =>
 0.003452s

29

Advanced DBI tutorial
© Tim Bunce

July 2007

30

Profile of a Profile

 Profiles ‘top level’ calls from application into DBI

 Profiling is controlled by, and collected into, $h->{Profile} attribute

 Child handles inherit reference to parent $h->{Profile}
– So child handle activity is aggregated into parent by default

 When enabled by DBI_PROFILE env var
– uses a single $h->{Profile} shared by all handles
– so all activity is aggregated into a single data tree

 Data is dumped when the $h->{Profile} object is destroyed

Advanced DBI tutorial
© Tim Bunce

July 2007

Profile Path ⇒ Profile Data

• The Path determines where each sample is accumulated within the Data hash tree

$h->{Profile}->{Path} = []

$h->{Profile}->{Data} = [...accumulated sample data...]

$h->{Profile}->{Path} = [“!MethodName”]

$h->{Profile}->{Data} = { “prepare” } -> [...]
 { “execute” } -> [...]

 { ... } -> [...]

$h->{Profile}->{Path} = [“!Statement”, “!MethodName”]

$h->{Profile}->{Data} = { “INSERT ...” } -> { “prepare” } -> [...]
 -> { “execute” } -> [...]

 { “SELECT ...” } -> { “prepare” } -> [...]
 -> { “execute” } -> [...]

31

Advanced DBI tutorial
© Tim Bunce

July 2007

Profile Leaf Node Data

 Each leaf node is a ref to an array:
 [

 106, # 0: count of samples at this node

 0.0312958955764771, # 1: total duration
 0.000490069389343262, # 2: first duration

 0.000176072120666504, # 3: shortest duration
 0.00140702724456787, # 4: longest duration

 1023115819.83019, # 5: time of first sample

 1023115819.86576, # 6: time of last sample
]

 First sample to create the leaf node populates all values
 Later samples reaching that node always update elements 0, 1, and 6
 and may update 3 or 4 depending on the duration of the sampled call

32

Advanced DBI tutorial
© Tim Bunce

July 2007

Profile Path Elements

33

Kind Example Use Example Result
“{AttributeName}” “{Statement}”

“{Username}”

“{AutoCommit}”
“{private_attr}”

“SELECT ...”

“timbunce”

“1”
“the value of private_attr”

“!Magic” “!Statement”

“!MethodName”

“!File”
“!Caller2”

“!Time~3600”

“SELECT ...”

“selectrow_array”

“MyFoo.pm”
“MyFoo.pm line 23 via Bar.pm line 9”

“1185112800”

\&subroutine sub { “bar” } “bar”

“&subname” “&norm_std_n3” list returned by function, see later slide

\$scalar \$Package::Var the value in $Package::Var
anything else “foo” “foo”

Advanced DBI tutorial
© Tim Bunce

July 2007

“!Statement” vs “{Statement}”

 “{Statement}” is always the value of the Statement attribute
– Fine for statement handle
– For database handles it’s the last statement executed
– That’s often not useful, or even misleading, for profiling

 “!Statement” is smarter
– Is an empty string for methods that are unrelated to current statement

 ping, commit, rollback, quote, dbh attribute FETCH & STORE, etc.
– so you get more accurate separation of profile data using “!Statement”

34

Advanced DBI tutorial
© Tim Bunce

July 2007

Managing statement variations

 For when placeholders aren’t being used or there are tables with numeric suffixes.
 A ‘&norm_std_n3’ in the Path maps to ‘!Statement’ edited in this way:

 s/\b\d+\b/<N>/g; # 42 -> <N>

 s/\b0x[0-9A-Fa-f]+\b/<N>/g; # 0xFE -> <N>

 s/'.*?'/'<S>'/g; # single quoted strings (doesn't handle escapes)

 s/".*?"/"<S>"/g; # double quoted strings (doesn't handle escapes)

 # convert names like log20001231 into log<N>

 s/([a-z_]+)(\d{3,})\b/${1}<N>/ieg;

 # abbreviate massive "in (...)" statements and similar

 s!((\s*<[NS]>\s*,\s*){100,})!sprintf("$2,<repeated %d times>",length($1)/2)!eg;

 It’s aggressive and simplistic but usually very effective.
 You can define your own custom subs in the DBI::ProfileSubs namespace

35

Advanced DBI tutorial
© Tim Bunce

July 2007

36

Profile specification

 Profile specification
 <path> / <class> / <args>
 DBI_PROFILE='!Statement:!MethodName/DBI::ProfileDumper::Apache/arg1:arg2:arg3'
 $h->{Profile} = '...same...';

 Class
 Currently only controls output formatting
 Other classes should subclass DBI::Profile

 DBI::Profile is the default
 provides a basic summary for humans
 large outputs are not easy to read
 can’t be filtered or sorted

Advanced DBI tutorial
© Tim Bunce

July 2007

Working with profile data

 To aggregate sample data for any part of the tree
– to get total time spent inside the DBI
– and return a merge all those leaf nodes

$time_in_dbi = dbi_profile_merge(my $totals=[], $node);

 To aggregate time in DBI since last measured
– For example per-httpd request

my $time_in_dbi = 0;

if (my $Profile = $dbh->{Profile}) { # if profiling enabled

 $time_in_dbi = dbi_profile_merge([], $Profile->{Data});

 $Profile->{Data} = undef; # reset the profile Data

}

add $time_in_dbi to httpd log

37

Advanced DBI tutorial
© Tim Bunce

July 2007

38

dbiprof

 DBI::ProfileDumper
 writes profile data to dbi.prof file for analysis

 DBI::ProfileDumper::Apache
 for mod_perl, writes a file per httpd process/thread

 DBI::ProfileData
 reads and aggregates dbi.prof files
 can remap and merge nodes in the tree

 dbiprof utility
 reads, summarizes, and reports on dbi.prof files
 by default prints nodes sorted by total time
 has options for filtering and sorting

Advanced DBI tutorial
© Tim Bunce

July 2007

Profile something else

 Adding your own samples

use DBI::Profile (dbi_profile dbi_time);

my $t1 = dbi_time(); # floating point high-resolution time

 ... execute code you want to profile here ...

my $t2 = dbi_time();

dbi_profile($h, $statement, $method, $t1, $t2);

 The dbi_profile function returns a ref to the relevant leaf node

 My new DashProfiler module on CPAN is built on dbi_profile
39

Attribution

Names and Places

Advanced DBI tutorial
© Tim Bunce

July 2007

41

Attribution - For Handles

 Two kinds of attributes: Handle Attributes and Method Attributes

 A DBI handle is a reference to a hash

 Handle Attributes can be read or set by accessing the hash via the reference
$h->{AutoCommit} = 0;

$autocomitting = $h->{AutoCommit};

 Some attributes are read-only
$sth->{NUM_OF_FIELDS} = 42; # fatal error

 Using an unknown attribute triggers a warning
 $sth->{AutoCommat} = 42; # triggers a warning
 $autocomitting = $sth->{AutoCommat}; # triggers a warning

– driver-private attributes (which have lowercase names) do not trigger a warning

Advanced DBI tutorial
© Tim Bunce

July 2007

42

Attribution - For Methods

 Two kinds of attributes: Handle Attributes and Method Attributes

 Many DBI methods take an ‘attributes’ parameter
– in the form of a reference to a hash of key-value pairs

 The attributes parameter is typically used to provide ‘hints’ to the driver
– Unrecognised attributes are simply ignored
– So invalid attribute name (like typos) won't be caught

 The method attributes are generally unrelated to handle attributes
– The connect() method is an exception
– In future prepare() may also accept handle attributes for the new handle

$sth = $dbh->prepare($sql, { RaiseError => 0 }); # one day

Advanced DBI tutorial
© Tim Bunce

July 2007

43

What’s in a name?

 The letter case used for attribute names is significant
– plays an important part in the portability of DBI scripts

 Used to signify who defined the meaning of that name and its values
 Case of name Has a meaning defined by
 UPPER_CASE Formal standards, e.g., X/Open, SQL92 etc (portable)
 MixedCase DBI API (portable), underscores are not used.
 lower_case Driver specific, ‘private’ attributes (non-portable)

 Each driver has its own prefix for its private method and handle attributes
– Ensures two drivers can’t define different meanings for the same attribute

$sth->bind_param(1, $value, { ora_type => 97, ix_type => 42 });

Handling your Handles

Get a grip

Advanced DBI tutorial
© Tim Bunce

July 2007

45

Let the DBI cache your handles

 Sometimes it's not easy to hold all your handles
– e.g., library code to lookup values from the database

 The prepare_cached() method
– gives you a client side statement handle cache:

sub lookup_foo {

 my ($dbh, $id) = @_;

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

 On later calls returns the previously cached handle
– for the given statement text and any method attributes

 Can avoid the need for global statement handle variables
– which can cause problems in some situations, see later

Advanced DBI tutorial
© Tim Bunce

July 2007

46

Some prepare_cached() issues

 A cached statement handle may still be Active
 because some other code is still fetching from it
 or didn't fetch all the rows (and didn't didn't call finish)
 perhaps due to an exception

 Default behavior for prepare_cached()
 if Active then warn and call finish()

 Rarely an issue in practice

 But if it is...
 Alternative behaviors are available via the $is_active parameter

$sth = $dbh->prepare_cached($sql, \%attr, $if_active)

 See the docs for details

Advanced DBI tutorial
© Tim Bunce

July 2007

47

Keep a handle on your databases

 Connecting to a database can be slow
– Oracle especially so

 Try to connect once and stay connected where practical
– We'll discuss web server issues later

 The connect_cached() method …
 Acts like prepare_cached() but for database handles
 Like prepare_cached(), it’s handy for library code
 It also checks the connection and automatically reconnects if it's broken
 Works well combined with prepare_cached(), see following example

.

Advanced DBI tutorial
© Tim Bunce

July 2007

48

A connect_cached() example

 Compare and contrast...
my $dbh = DBI->connect(…);

sub lookup_foo_1 {

 my ($id) = @_;

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

 with...
sub lookup_foo_2 {

 my ($id) = @_;

 my $dbh = DBI->connect_cached(…);

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

Clue: what happens if the database is restarted?

Advanced DBI tutorial
© Tim Bunce

July 2007

49

Some connect_cached() issues

 Because connect_cached() may return a new connection...
 it’s important to specify all significant attributes within the connect() call
 e.g., AutoCommit, RaiseError, PrintError
 So pass the same set of attributes into all connect calls

 Similar, but not quite the same as Apache::DBI
 Doesn’t disable the disconnect() method.

 The caches can be accessed via the CachedKids handle attribute
 $dbh->{CachedKids} - for prepare_cached()
 $dbh->{Driver}->{CachedKids} - for connect_cached()
 Could also be tied to implement LRU and other size-limiting caching strategies

tie %{$dbh->{CachedKids}}, SomeCacheModule;

.

Advanced DBI tutorial
© Tim Bunce

July 2007

Find your ChildHandles

 Each handles keeps track of its child handles
 The ChildHandles attribute returns a reference to an array

$array_ref = $h->{ChildHandles};
 The elements of the array are weak-refs to the child handles
 An element becomes undef when the handle is destroyed

 So you can recursively list all your handles
 sub show_child_handles {
 my ($h, $level) = @_;
 printf "%sh %s %s\n", $h->{Type}, "\t" x $level, $h;
 show_child_handles($_, $level + 1)
 for (grep { defined } @{$h->{ChildHandles}});
 }
 my %drivers = DBI->installed_drivers();
 show_child_handles($_, 0) for (values %drivers);

 See my Apache::Status::DBI module for good example 50

Binding (Value Bondage)

Placing values in holders

Advanced DBI tutorial
© Tim Bunce

July 2007

52

First, the simple stuff...

 After calling prepare() on a statement with placeholders:
$sth = $dbh->prepare(“select * from table where k1=? and k2=?”);

 Values need to be assigned (‘bound’) to each placeholder before the
database can execute the statement

 Either at execute, for simple cases:
$sth->execute($p1, $p2);

 or before execute:
$sth->bind_param(1, $p1);

$sth->bind_param(2, $p2);

$sth->execute;

Advanced DBI tutorial
© Tim Bunce

July 2007

53

Then, some more detail...

 If $sth->execute(…) specifies any values, it must specify them all

 Bound values are sticky across multiple executions:
$sth->bind_param(1, $p1);

foreach my $p2 (@p2) {

 $sth->bind_param(2, $p2);

 $sth->execute;

}

 The currently bound values are retrievable using:
%bound_values = %{ $sth->{ParamValues} };

– Not implemented by all drivers yet

.

Advanced DBI tutorial
© Tim Bunce

July 2007

54

Your TYPE or mine?

 Sometimes the data type for bind values needs to be specified

use DBI qw(:sql_types);
– to import the type constants

$sth->bind_param(1, $value, { TYPE => SQL_INTEGER });

– to specify the INTEGER type
– which can be abbreviated to:

$sth->bind_param(1, $value, SQL_INTEGER);

 To just distinguish numeric versus string types, try
$sth->bind_param(1, $value+0); # bind as numeric value

$sth->bind_param(1, ”$value”); # bind as string value
– Works because perl values generally know if they are strings or numbers. So...
– Generally the +0 or ”” isn’t needed because $value has the right ‘perl type’ already

Advanced DBI tutorial
© Tim Bunce

July 2007

55

Got TIME for a DATE?

 Date and time types are strings in the native database format
 many valid formats, some incompatible or ambiguous 'MM/DD/YYYY' vs 'DD/MM/YYYY'

 Obvious need for a common format
 The SQL standard (ISO 9075) uses 'YYYY-MM-DD' and 'YYYY-MM-DD HH:MM:SS'

 DBI now says using a date/time TYPE mandates ISO 9075 format
$sth->bind_param(1, "2004-12-31", SQL_DATE);

$sth->bind_param(2, "2004-12-31 23:59:59", SQL_DATETIME);

$sth->bind_col(1, \$foo, SQL_DATETIME); # for selecting data

 Driver is expected to convert to/from native database format
 New feature, as of DBI 1.43, not yet widely supported

.

Advanced DBI tutorial
© Tim Bunce

July 2007

56

Some TYPE gotchas

 Bind TYPE attribute is just a hint
– and like all hints in the DBI, they can be ignored
– the driver is unlikely to warn you that it's ignoring an attribute

 Many drivers only care about the number vs string distinction
– and ignore other kinds of TYPE value

 For some drivers/databases that do pay attention to the TYPE…
– using the wrong type can mean an index on the value field isn’t used
– or worse, may alter the effect of the statement

 Some drivers let you specify private types
$sth->bind_param(1, $value, { ora_type => 97 });

-

Error Checking & Error Handling

To err is human,
to detect, divine!

Advanced DBI tutorial
© Tim Bunce

July 2007

58

The importance of error checking

 Errors happen!
 Failure happens when you don't expect errors!

– database crash / network disconnection
– lack of disk space for insert, or even select (sort space for order by)
– server math error on select (divide by zero while fetching rows)
– and maybe, just maybe, errors in your own code [Gasp!]

 Beat failure by expecting errors!

 Detect errors early to limit effects
– Defensive Programming, e.g., check assumptions
– Through Programming, e.g., check for errors after fetch loops

 Undefined values are your friends: always enable warnings
– They are your ‘canary in the coal mine’ giving you early warning

Advanced DBI tutorial
© Tim Bunce

July 2007

59

Error checking - ways and means

 Error checking the hard way...

$h->method or die "DBI method failed: $DBI::errstr";

$h->method or die "DBI method failed: $DBI::errstr";

$h->method or die "DBI method failed: $DBI::errstr";

 Error checking the smart way...

$h->{RaiseError} = 1;

$h->method;

$h->method;

$h->method;

Advanced DBI tutorial
© Tim Bunce

July 2007

60

Handling errors the smart way

 Setting RaiseError make the DBI call die for you

 For simple applications immediate death on error is fine
– The error message is usually accurate and detailed enough
– Better than the error messages some developers use!

 For more advanced applications greater control is needed, perhaps:
– Correct the problem and retry
– or, Fail that chunk of work and move on to another
– or, Log error and clean up before a graceful exit
– or, whatever else to need to do

 Buzzwords:
– Need to catch the error exception being thrown by RaiseError

.

Advanced DBI tutorial
© Tim Bunce

July 2007

61

Catching the Exception

 Life after death
$h->{RaiseError} = 1;

eval {

 foo();

 $h->method; # if it fails then the DBI calls die

 bar($h); # may also call DBI methods

};

if ($@) { # $@ holds error message

 ... handle the error here …

}

 Bonus
– Other, non-DBI, code within the eval block may also raise an exception
– that will also be caught and can be handled cleanly

.

Advanced DBI tutorial
© Tim Bunce

July 2007

62

Picking up the Pieces

 So, what went wrong?
$@

– holds the text of the error message
if ($DBI::err && $@ =~ /^(\S+) (\S+) failed: /)

– then it was probably a DBI error
– and $1 is the driver class (e.g. DBD::foo::db), $2 is the name of the method (e.g. prepare)

$DBI::lasth
– holds last DBI handle used (not recommended for general use)

$h->{Statement}
– holds the statement text associated with the handle (even if it’s a database handle)

 $h->{ShowErrorStatement} = 1
– appends $h->{Statement} to RaiseError/PrintError messages:
– DBD::foo::execute failed: duplicate key [for ``insert …’’]
– for statement handles it also includes the $h->{ParamValues} if available.
– Makes error messages much more useful. Better than using $DBI::lasth
– Many drivers should enable it by default. Inherited by child handles.

Advanced DBI tutorial
© Tim Bunce

July 2007

63

Custom Error Handling

 Don’t want to just Print or Raise an Error?
 Now you can Handle it as well…

$h->{HandleError} = sub { … };

 The HandleError code
 is called just before PrintError/RaiseError are handled
 it’s passed

– the error message string that RaiseError/PrintError would use
– the DBI handle being used
– the first value being returned by the method that failed (typically undef)

 if it returns false then RaiseError/PrintError are checked and acted upon as normal

 The handler code can
 alter the error message text by changing $_[0]
 use caller() or Carp::confess() or similar to get a stack trace
 use Exception or a similar module to throw a formal exception object

Advanced DBI tutorial
© Tim Bunce

July 2007

64

More Custom Error Handling

 It is also possible for HandleError to hide an error, to a limited degree
– use set_err() to reset $DBI::err and $DBI::errstr
– alter the return value of the failed method

$h->{HandleError} = sub {

 my ($errmsg, $h) = @_;

 return 0 unless $errmsg =~ /^\S+ fetchrow_arrayref failed:/;

 return 0 unless $h->err == 1234; # the error to 'hide'

 $h->set_err(0,""); # turn off the error

 $_[2] = [...]; # supply alternative return value by altering parameter

 return 1;

};

 Only works for methods which return a single value and is hard to make reliable
(avoiding infinite loops, for example) and so isn't recommended for general use!

– If you find a good use for it then please let me know.

Advanced DBI tutorial
© Tim Bunce

July 2007

65

Information and Warnings

 Drivers can indicate Information and Warning states in addition to Error states
 Uses false-but-defined values of $h->err and $DBI::err
 Zero "0" indicates a "warning"
 Empty "" indicates "success with information" or other messages from database

 Drivers should use $h->set_err(…) method to record info/warn/error states
 implements logic to correctly merge multiple info/warn/error states
 info/warn/error messages are appended to errstr with a newline
 $h->{ErrCount} attribute is incremented whenever an error is recorded

 The $h->{HandleSetErr} attribute can be used to influence $h->set_err()
 A code reference that's called by set_err and can edit its parameters
 So can promote warnings/info to errors or demote/hide errors etc.
 Called at point of error from within driver, unlike $h->{HandleError}

 The $h->{PrintWarn} attribute acts like $h->{PrintError} but for warnings
 Default is on

Transactions

To do or to undo,
that is the question

Advanced DBI tutorial
© Tim Bunce

July 2007

67

Transactions - Eh?

 Far more than just locking
 The A.C.I.D. test

– Atomicity - Consistency - Isolation - Durability
 True transactions give true safety

– even from power failures and system crashes!
– Incomplete transactions are automatically rolled-back by the database

server when it's restarted.
 Also removes burden of undoing incomplete changes
 Hard to implement (for the vendor)

– and can have significant performance cost
 Another very large topic worthy of an entire tutorial

Advanced DBI tutorial
© Tim Bunce

July 2007

68

Transactions - Life Preservers

 Text Book:
– system crash between one bank account being debited and another being credited.

 Dramatic:
– power failure during update on 3 million rows when only part way through.

 Real-world:
– complex series of inter-related updates, deletes and inserts on many separate tables

fails at the last step due to a duplicate unique key on an insert.

 Locking alone won’t help you in any of these situations
– (And locking with DBD::mysql < 2.1027 is unsafe due to auto reconnect)

 Transaction recovery would handle all these situations - automatically
– Makes a system far more robust and trustworthy over the long term.

 Use transactions if your database supports them.
– If it doesn't and you need them, switch to a different database.

.

Advanced DBI tutorial
© Tim Bunce

July 2007

69

Transactions - How the DBI helps

 Tools of the trade:
 Set AutoCommit off
 Set RaiseError on
 Wrap eval { … } around the code
 Use $dbh->commit; and $dbh->rollback;

 Disable AutoCommit via $dbh->{AutoCommit}=0 or $dbh->begin_work;
– to enable use of transactions

 Enable RaiseError via $dbh->{RaiseError} = 1;
– to automatically 'throw an exception' when an error is detected

 Add surrounding eval { … }
– catches the exception, the error text is stored in $@

 Test $@ and then $dbh->rollback() if set

– note that a failed statement doesn’t automatically trigger a transaction rollback

Advanced DBI tutorial
© Tim Bunce

July 2007

70

Transactions - Example code

$dbh->{RaiseError} = 1;

$dbh->begin_work; # AutoCommit off till commit/rollback

eval {
 $dbh->method(…); # assorted DBI calls
 foo(...); # application code
 $dbh->commit; # commit the changes
};

if ($@) {
 warn "Transaction aborted because $@";
 eval { $dbh->rollback }; # may also fail
 ...
}

Advanced DBI tutorial
© Tim Bunce

July 2007

71

Transactions - Further comments

 The eval { … } catches all exceptions
– not just from DBI calls. Also catches fatal runtime errors from Perl

 Put commit() inside the eval
– ensures commit failure is caught cleanly
– remember that commit itself may fail for many reasons

 Don't forget rollback() and that rollback() may also fail
– due to database crash or network failure etc.
– so you'll probably want to use eval { $dbh->rollback };

 Other points:
– Always explicitly commit or rollback before disconnect
– Destroying a connected $dbh should always rollback
– END blocks can catch exit-without-disconnect to rollback and disconnect cleanly
– You can use ($dbh && $dbh->{Active}) to check if still connected

-

Intermission?

Wheels within Wheels

The DBI architecture
and how to watch it at work

Advanced DBI tutorial
© Tim Bunce

July 2007

74

Setting the scene

 Inner and outer worlds
 Application and Drivers

 Inner and outer handles
 DBI handles are references to tied hashes

 The DBI Method Dispatcher
 gateway between the inner and outer worlds, and the heart of the DBI

… Now we'll go all deep and visual for a while...

Advanced DBI tutorial
© Tim Bunce

July 2007

75

Architecture of the DBI classes #1

DBD::B::dr DBD::B::db DBD::B::st

DBD::A::dr DBD::A::db DBD::A::st

Parallel handle-type classes implemented by drivers.

‘’outer’’

DBD::_::dr DBD::_::db DBD::_::st

‘’inner’’

DBD::_::common
Base classes
providing
fallback
behavior.

DBI

DBI::dr DBI::db DBI::st

DBI::xx handle classes visible to applications
(these classes are effectively ‘empty’):

Alternative db and st classes are used if the
DBI is being subclassed.

MyDb::db MyDb::st

MyDb

Advanced DBI tutorial
© Tim Bunce

July 2007

method1
prepare
do
method4
method5

DBI::_::dbDBI::db

76

Architecture of the DBI classes #2

method1
prepare

method3
method4

method1

do
method4

DBD::A::db

DBD::B::db

DBD::A::st
method
7

method
7

DBI::st

Application
makes calls
to methods
using $dbh
DBI database
handle
object

method1
prepare
do
method4
method5
method6

‘’outer’’

dispatch
DBI

method4

method6

DBI::_::common

‘’inner’’

Advanced DBI tutorial
© Tim Bunce

July 2007

77

Anatomy of a DBI handle

Handle
Ref.

DBI
Magic

‘’outer’’ ‘’inner’’

struct imp_dbh_t {

 struct dbih_dbc_t com;

 … implementers …
 … own data ...

}

struct dbih_dbc_t {

 … DBI data ...

}

Hash
(tied)

DBI::db

Tie
Magic

Hash

DBI::db

Attribute
Cache

Advanced DBI tutorial
© Tim Bunce

July 2007

78

Method call walk-through

 Consider a simple prepare call:
 $dbh->prepare(…)

 $dbh is reference to an object in the DBI::db class (regardless of driver)

 The DBI::db::prepare method is an alias for the DBI dispatch method

 DBI dispatch calls the driver’s own prepare method something like this:
 my $inner_hash_ref = tied %$dbh;

 my $implementor_class = $inner_hash_ref->{ImplementorClass};

 $inner_hash_ref->$implementor_class::prepare(...)

 Driver code gets the inner hash
 so it has fast access to the hash contents without tie overheads

_

Advanced DBI tutorial
© Tim Bunce

July 2007

79

Watching the DBI in action

 DBI has detailed call tracing built-in
 Can be very helpful in understanding application behaviour
 Shows parameters and results
 Has multiple levels of detail
 Can show detailed internal information from the DBI and drivers
 Can be written to a file

 Not used often enough
 Not used often enough

 Not used often enough!
 Not used often enough!

Advanced DBI tutorial
© Tim Bunce

July 2007

80

Enabling tracing

 Per handle
$h->{TraceLevel} = $level;

$h->trace($level);

$h->trace($level, $filename); # $filename applies to all handles

$h->trace($level, $filehandle); # $filehandle applies to all ’’
 Trace level only affects that handle and any new child handles created from it
 Child handles get trace level of parent in effect at time of creation
 Can be set via DSN: "dbi:Driver(TraceLevel=2):…"

 Global (internal to application)
DBI->trace(...);

 Sets effective global default minimum trace level

 Global (external to application)
 Enabled using DBI_TRACE environment variable
DBI_TRACE=digits same as DBI->trace(digits);
DBI_TRACE=digits=filename same as DBI->trace(digits, filename);

Advanced DBI tutorial
© Tim Bunce

July 2007

81

Our program for today...

#!/usr/bin/perl -w

use DBI;

$dbh = DBI->connect('', '', '', { RaiseError => 1 });

replace_price(split(/\s+/, $_)) while (<STDIN>);

$dbh->disconnect;

sub replace_price {

 my ($id, $price) = @_;

 local $dbh->{TraceLevel} = 1;

 my $upd = $dbh->prepare("UPDATE prices SET price=? WHERE id=?");

 my $ins = $dbh->prepare_cached("INSERT INTO prices (id,price) VALUES(?,?)");

 my $rows = $upd->execute($price, $id);

 $ins->execute($id, $price) if $rows == 0;

}

(The program is a little odd for the sake of producing a small trace output that can illustrate many concepts)

Advanced DBI tutorial
© Tim Bunce

July 2007

82

Trace level 1

 Level 1 shows method returns with first two parameters, results, and line numbers:

 DBI::db=HASH(0x823c6f4) trace level 0x0/1 (DBI 0x0/0) DBI 1.43 (pid 78730)

 <- prepare('UPDATE prices SET price=? WHERE prod_id=?')=

 DBI::st=HASH(0x823a478) at trace-ex1.pl line 10

 <- prepare_cached('INSERT INTO prices (prod_id,price) VALUES(?,?)')=

 DBI::st=HASH(0x823a58c) at trace-ex1.pl line 11

 <- execute('42.2', '1')= 1 at trace-ex1.pl line 12

 <- STORE('TraceLevel', 0)= 1 at trace-ex1.pl line 4

 <- DESTROY(DBI::st=HASH(0x823a478))= undef at trace-ex1.pl line 4

 Level 1 only shows methods called by application
 not recursive calls made by the DBI or driver

Advanced DBI tutorial
© Tim Bunce

July 2007

83

Trace level 2 and above

 Level 2 adds trace of entry into methods, details of classes, handles, and more
– we’ll just look at the trace for the prepare_cached() call here:

 -> prepare_cached in DBD::_::db for DBD::mysql::db
 (DBI::db=HASH(0x81bcd80)~0x823c6f4

 'INSERT INTO prices (prod_id,price) VALUES(?,?)')
1 -> FETCH for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER 'CachedKids')
1 <- FETCH= undef at DBI.pm line 1507

1 -> STORE for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER 'CachedKids'
 HASH(0x823a5d4))

1 <- STORE= 1 at DBI.pm line 1508
1 -> prepare for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER
 'INSERT INTO prices (prod_id,price) VALUES(?,?)' undef)

1 <- prepare= DBI::st=HASH(0x823a5a4) at DBI.pm line 1519
 <- prepare_cached= DBI::st=HASH(0x823a5a4) at trace-ex1.pl line 11

 Trace level 3 and above shows more internal processing and driver details
 Use $DBI::neat_maxlen to alter truncation of strings in trace output

.

Advanced DBI tutorial
© Tim Bunce

July 2007

84

What’s new with tracing?

 Trace level now split into trace level (0-15) and trace topics
 DBI and drivers can define named trace topics

$h->{TraceLevel} = "foo|SQL|7";
DBI->connect("dbi:Driver(TraceLevel=SQL|bar):...", ...);
DBI_TRACE = "foo|SQL|7|baz" # environment variable

 Currently no trace topics have been defined

 Can now write trace to an open filehandle
$h->trace($level, $filehandle);

 so can write trace directly into a scalar using perlio ‘layers’:
open my $tracefh, '+>:scalar', \my $tracestr;

$dbh->trace(1, $tracefh);

 New dbilogstrip utility enables diff’ing of DBI logs

DBI for the Web

Hand waving from 30,000 feet

Advanced DBI tutorial
© Tim Bunce

July 2007

86

Web DBI - Connect speed

 Databases can be slow to connect
– Traditional CGI forces a new connect per request

 Move Perl and DBI into the web server
– Apache with mod_perl and Apache::DBI module
– Microsoft IIS with ActiveState's PerlEx

 Connections can then persist and be shared between requests
– Apache::DBI automatically used by DBI if loaded
– No CGI script changes required to get persistence

 Take care not to change the shared session behaviour
– Leave the $dbh and db session in the same state you found it!

 Other alternatives include
– FastCGI (old), SCGI (new), CGI::SpeedyCGI and CGI::MiniSvr
– DBD::Gofer & DBD::Proxy

Advanced DBI tutorial
© Tim Bunce

July 2007

87

Web DBI - Too many connections

 Busy web sites run many web server processes
– possibly on many machines...
– Machines * Processes = Many Connections
– Machines * Processes * Users = Very Many Connections

 Limits on database connections
– Memory consumption of web server processes
– Database server resources (memory, threads etc.) or licensing

 So… partition web servers into General and Database groups

 Redirect requests that require database access to the Database web servers
– Use Reverse Proxy / Redirect / Rewrite to achieve this
– Allows each subset of servers to be tuned to best fit workload
– And/or be run on appropriate hardware platforms

.

Advanced DBI tutorial
© Tim Bunce

July 2007

88

Web DBI - State-less-ness

 No fixed client-server pair
– Each request can be handled by a different process.
– So can't simply stop fetching rows from $sth when one page is complete and continue

fetching from the same $sth when the next page is requested.
– And transactions can't span requests.
– Even if they could you'd have problems with database locks being held etc.

 Need access to 'accumulated state' somehow:
– via the client (e.g., hidden form fields - simple but insecure)

 Can be made safer using encryption or extra field with checksum (e.g. MD5 hash)
– via the server:

 requires a session id (via cookie or url)
 in the database (records in a session_state table keyed the session id)
 in the web server file system (DBM files etc) if shared across servers
 Need to purge old state info if stored on server, so timestamp it
 See Apache::Session module

.

Advanced DBI tutorial
© Tim Bunce

July 2007

89

Web DBI - Browsing pages of results

 Re-execute query each time then count/discard (simple but expensive)
– works well for small cheap results sets or where users rarely view many pages
– if count/discard in server then fast initial response, degrades gradually for later pages
– count/discard in client is bad if server prefetches all the rows anyway
– count/discard affected by inserts and deletes from other processes

 Re-execute query with where clause using min/max keys from last results
– works well where original query can be qualified in that way

 Select and cache full result rows somewhere for fast access
– can be expensive for large result sets with big fields

 Select and cache only the row keys, fetch full rows as needed
– optimisation of above, use ROWID if supported, "select … where key in (…)"

 If data is static and queries predictable
– then custom pre-built indexes may be useful

 The caches can be stored...
– on web server, e.g., using DBM file with locking (see also ‘spread’)
– on database server, e.g., using a table keyed by session id

Advanced DBI tutorial
© Tim Bunce

July 2007

90

Web DBI - Concurrent editing

 How to prevent updates overwriting each other?
 You can use Optimistic Locking via 'fully qualified update':

update table set ...

where key = $old_key

and field1 = $old_field1

and field2 = $old_field2 and … for all other fields

 Check the update row count
 If it's zero then you know the record has been changed

– or deleted by another process

 Note
 Potential problems with floating point data values not matching
 Some databases support a high-resolution 'update timestamp' field that can be

checked instead

Advanced DBI tutorial
© Tim Bunce

July 2007

91

Web DBI - Tips for the novice

 Test one step at a time
– Test perl + DBI + DBD driver outside the web server first
– Test web server + non-DBI CGI next

 Remember that CGI scripts run as a different user with a different environment
– expect to be tripped up by that

 DBI $h->trace($level, $filename) is your friend
– use it!

 Use the perl "-w" and "-T" options.
– Always "use strict;" everywhere

 Read and inwardly digest the WWW Security FAQ:
– http://www.w3.org/Security/Faq/www-security-faq.html

 Read the CGI related Perl FAQs:
– http://www.perl.com/perl/faq/

 And if using Apache, read the mod_perl information available from:
– http://perl.apache.org

Other Topics

Bulk Operations
Security Tainting

Handling LOB/LONG Data
Callbacks

Fetching Nested Data
Unicode Tools

Advanced DBI tutorial
© Tim Bunce

July 2007

93

Bulk Operations

 Execute a statement for multiple values (column-wise)
$sth = $dbh->prepare("insert into table (foo,bar) values (?,?)");

$tuples = $sth->execute_array(\%attr, \@foo_values, \@bar_values);

– returns count of executions, not rows-affected, or undef if any failed

 Explicit array binding (column-wise)
$dbh->bind_param_array(1, \@foo_values, \%attr);

$dbh->bind_param_array(2, \@bar_values, \%attr);

$sth->execute_array(\%attr) # uses bind_param_array values

 Attribute to record per-tuple status:
ArrayTupleStatus => $array_ref elements are rows-affected or [err, errstr, state]

 Row-wise bulk operations and streaming
$tuples = $sth->execute_for_fetch(sub {...}, \@tuple_status);

 Works for all drivers, but some use underlying db bulk API so are very fast!

Advanced DBI tutorial
© Tim Bunce

July 2007

94

DBI security tainting

 By default DBI ignores Perl tainting
– doesn't taint database data returned ‘out’ of the DBI
– doesn't check that parameters passed ‘in’ to the DBI are not tainted

 The TaintIn and TaintOut attributes enable those behaviours
– If Perl itself is in taint mode.

 Each handle has it's own inherited tainting attributes
– So can be enabled for particular connections and disabled for particular statements, for

example:
$dbh = DBI->connect(…, { Taint => 1 }); # enable TaintIn and TaintOut

$sth = $dbh->prepare("select * from safe_table");

$sth->{TaintOut} = 0; # don’t taint data from this statement handle

 Attribute metadata currently varies in degree of tainting
$sth->{NAME}; — generally not tainted
$dbh->get_info(…); — may be tainted if the item of info is fetched from database

.

Advanced DBI tutorial
© Tim Bunce

July 2007

95

Handling LONG/BLOB data

 What makes LONG / BLOB data special?
 Not practical to pre-allocate fixed size buffers for worst case

 Fetching LONGs - treat as normal fields after setting:
 $dbh->{LongReadLen} - buffer size to allocate for expected data
 $dbh->{LongTruncOk} - should truncating-to-fit be allowed

 Inserting LONGs
 The limitations of string literals (max SQL length, quoting binary strings)
 The benefits of placeholders

 Chunking / Piecewise processing not yet supported
 So you're limited to available memory
 Some drivers support blob_read()and other private methods

-

Advanced DBI tutorial
© Tim Bunce

July 2007

Intercepting DBI Method Calls

 An alternative to subclassing
 Added in DBI 1.49 - Nov 2005
 but not yet documented and still subject to change

 Example:
$dbh->{Callbacks}->{prepare} = sub { ... }

 Arguments to original method are passed in
 The name of the method is in $_ (localized)
 Callback code can force method call to be skipped
 The Callbacks attribute is not inherited by child handle

 Some special ‘method names’ are supported:
connect_cached.new

connect_cached.reused 96

Advanced DBI tutorial
© Tim Bunce

July 2007

Fetching Multiple Keys

• fetchall_hashref() now supports multiple key columns

$sth = $dbh->prepare(“select state, city, ...”);

$sth->execute;

$data = $sth->fetchall_hashref([‘state’, ‘city’]);

$data = {
CA => {

LA => { state=>’CA’, city=>’LA’, ... },

SF => { state=>’CA’, city=>’SF’, ... },

},

NY => {
NY => { ... },

}

• Also works for selectall_hashref() 97

Advanced DBI tutorial
© Tim Bunce

July 2007

Unicode Tools

 Unicode problems can have many causes and occur at many levels
 The DBI is Unicode transparent, but drivers might not be
 So the DBI provides some simple tools to help:
 neat($value)

 Unicode strings are shown double quoted, other strings are single quoted

 data_string_desc($value)
 Returns ‘physical’ description of a string, for example:

“UFT8 on but INVALID ENCODING, non-ASCII, 4 chars, 9 bytes”

 data_string_diff($value1, $value2)
 Compares the logical characters not physical bytes
 Returns description of logical differences, else an empty string

 data_diff($value1, $value2)
 Calls data_string_desc and data_string_diff 98

Portability

A Holy Grail
(to be taken with a pinch of salt)

Advanced DBI tutorial
© Tim Bunce

July 2007

100

Portability in practice

 Portability requires care and testing - it can be tricky

 Platform Portability - the easier bit
– Availability of database client software and DBD driver
– DBD::Proxy can address both these issues - see later

 Database Portability - more tricky but the DBI offers some help
– Differences in SQL dialects cause most problems
– Differences in data types can also be a problem
– Driver capabilities (placeholders etc.)
– Database meta-data (keys and indices etc.)
– A standard test suite for DBI drivers is needed

 DBIx::AnyDBD functionality has been merged into the DBI
– can help with writing portable code, just needs documenting

-

Advanced DBI tutorial
© Tim Bunce

July 2007

101

SQL Portability - Data Types

 For raw information about data types supported by the driver:

$type_info_data = $dbh->type_info_all(…);

 To map data type codes to names:

$sth = $dbh->prepare(“select foo, bar from tablename”);
$sth->execute;

for my $i (0 .. $sth->{NUM_OF_FIELDS}) {
printf ”Column name %s: Column type name: %s”,
 $sth->{NAME}->[$i],
 $dbh->type_info($sth->{TYPE}->[$i])->{TYPE_NAME};

}

 To select the nearest type supported by the database:

$my_date_type = $dbh->type_info([SQL_DATE, SQL_TIMESTAMP]);

$my_smallint_type = $dbh->type_info([SQL_SMALLINT, SQL_INTEGER, SQL_DECIMAL]);

Advanced DBI tutorial
© Tim Bunce

July 2007

102

SQL Portability - SQL Dialects

 How to concatenate strings? Let me count the (incompatible) ways...
SELECT first_name || ' ' || last_name FROM table

SELECT first_name + ' ' + last_name FROM table

SELECT first_name CONCAT ' ' CONCAT last_name FROM table

SELECT CONCAT(first_name, ' ', last_name) FROM table

SELECT CONCAT(first_name, CONCAT(' ', last_name)) FROM table

 The ODBC way: (not pretty, but portable)
SELECT {fn CONCAT(first_name, {fn CONCAT(' ', last_name))}} FROM table

 The {fn …} will be rewritten by prepare() to the required syntax via a call to
$new_sql_fragment = $dbh->{Rewrite}->CONCAT(”…”)

 Similarly for some data types:
SELECT * FROM table WHERE date_time > {ts ’2002-06-04 12:00:00’} FROM table

$new_sql_fragment = $dbh->{Rewrite}->ts(’2002-06-04 12:00:00’)

 This 'rewrite' functionality is planned but not yet implemented

Advanced DBI tutorial
© Tim Bunce

July 2007

103

SQL Portability - SQL Dialects

 Most people are familiar with how to portably quote a string literal:
$dbh->quote($value)

 You can also portably quote identifiers like table names:
$dbh->quote_identifier($name);

$dbh->quote_identifier($name1, $name2, $name3, \%attr);

For example:
$dbh->quote_identifier(undef, 'Her schema', 'My table');

using DBD::Oracle: "Her schema"."My table”

using DBD::mysql: `Her schema`.`My table`

 If three names are supplied then special rules apply based on what get_info() returns for
SQL_CATALOG_NAME_SEPARATOR and SQL_CATALOG_LOCATION:

For example:
$dbh->quote_identifier(’link’, ’schema’, ’table’);

using DBD::Oracle: "schema"."table"@"link"

Advanced DBI tutorial
© Tim Bunce

July 2007

104

SQL Portability - Driver Capabilities

 How can you tell what functionality the current driver and database support?
$value = $dbh->get_info(…);

 Here’s a small sample of the information potentially available:
 AGGREGATE_FUNCTIONS BATCH_SUPPORT CATALOG_NAME_SEPARATOR CONCAT_NULL_BEHAVIOR CONVERT_DATE

CONVERT_FUNCTIONS CURSOR_COMMIT_BEHAVIOR CURSOR_SENSITIVITY DATETIME_LITERALS DBMS_NAME DBMS_VER
DEFAULT_TXN_ISOLATION EXPRESSIONS_IN_ORDERBY GETDATA_EXTENSIONS GROUP_BY IDENTIFIER_CASE
IDENTIFIER_QUOTE_CHAR INTEGRITY KEYWORDS LIKE_ESCAPE_CLAUSE LOCK_TYPES MAX_COLUMNS_IN_INDEX
MAX_COLUMNS_IN_SELECT MAX_IDENTIFIER_LEN MAX_STATEMENT_LEN MAX_TABLES_IN_SELECT MULT_RESULT_SETS
OJ_CAPABILITIES PROCEDURES SQL_CONFORMANCE TXN_CAPABLE TXN_ISOLATION_OPTION UNION …

 A specific item of information is requested using its standard numeric value

$db_version = $dbh->get_info(18); # 18 == SQL_DBMS_VER

 The standard names can be mapped to numeric values using:

use DBI::Const::GetInfo;

$dbh->get_info($GetInfoType{SQL_DBMS_VER})

Advanced DBI tutorial
© Tim Bunce

July 2007

105

SQL Portability - Metadata

 Getting data about your data:

$sth = $dbh->table_info(...)

– Now allows parameters to qualify which tables you want info on

$sth = $dbh->column_info($cat, $schema, $table, $col);

– Returns information about the columns of a table

$sth = $dbh->primary_key_info($cat, $schema, $table);

– Returns information about the primary keys of a table

@keys = $dbh->primary_key($cat, $schema, $table);

– Simpler way to return information about the primary keys of a table

$sth = $dbh->foreign_key_info($pkc, $pks, $pkt, $fkc, $fks, $fkt);

– Returns information about foreign keys

DBI::SQL::Nano

A
"smaller than micro"

SQL parser

Advanced DBI tutorial
© Tim Bunce

July 2007

107

DBI::SQL::Nano

 The DBI now includes an SQL parser module: DBI::SQL::Nano

– Has an API compatible with SQL::Statement

 If SQL::Statement is installed then DBI::SQL::Nano becomes an empty subclass
of SQL::Statement

– unless the DBI_SQL_NANO env var is true.

 Existing DBD::File module is now shipped with the DBI
– base class for simple DBI drivers
– modified to use DBI::SQL::Nano.

 A DBD::DBM driver now ships with the DBI
– An SQL interface to DBM and MLDBM files using DBD::File and DBI::SQL::Nano.

 Thanks to Jeff Zucker

Advanced DBI tutorial
© Tim Bunce

July 2007

108

DBI::SQL::Nano

 Supported syntax
DROP TABLE [IF EXISTS] <table_name>

CREATE TABLE <table_name> <col_def_list>

INSERT INTO <table_name> [<insert_col_list>] VALUES <val_list>

DELETE FROM <table_name> [<where_clause>]

UPDATE <table_name> SET <set_clause> [<where_clause>]

SELECT <select_col_list> FROM <table_name> [<where_clause>] [<order_clause>]

 Where clause
 a single "[NOT] column/value <op> column/value" predicate
 multiple predicates combined with ORs or ANDs are not supported
 op may be one of: < > >= <= = <> LIKE CLIKE IS

 If you need more functionality...
 Just install the SQL::Statement module

_

The Power of the Proxy,
 Flexing the Multiplex,
and a Pure-Perl DBI!

Thin clients, high availability ...
and other buzz words

Advanced DBI tutorial
© Tim Bunce

July 2007

110

DBD::Proxy & DBI::ProxyServer

 Networking for non-networked databases

 DBD::Proxy driver forwards calls over network to remote DBI::ProxyServer

 No changes in application behavior
– Only the DBI->connect statement needs to be changed, or...

 Proxy can be made completely transparent
– by setting the DBI_AUTOPROXY environment variable
– so not even the DBI->connect statement needs to be changed!

 DBI::ProxyServer works on Win32
– Access to Access and other Win32 ODBC and ADO data sources

 Developed by Jochen Wiedmann

Advanced DBI tutorial
© Tim Bunce

July 2007

111

A Proxy Picture

Application

DBI

DBD::Foo

DBI

DBI::ProxyServer

RPC::pServer
IO:Socket Storable

Network

RPC::pClient
Storable IO::Socket

DBD::Proxy

Advanced DBI tutorial
© Tim Bunce

July 2007

112

Thin clients and other buzz words

 Proxying for remote access: "thin-client"
– No need for database client code on the DBI client

 Proxying for network security: "encryption"
– Can use Crypt::IDEA, Crypt::DES etc.

 Proxying for "access control" and "firewalls"
– extra user/password checks, choose port number, handy for web servers

 Proxying for action control
– e.g., only allow specific select or insert statements per user or host

 Proxying for performance: "compression"
– Can compress data transfers using Compress::Zlib

.

Advanced DBI tutorial
© Tim Bunce

July 2007

113

The practical realities

 Modes of operation for proxy server:

 Multi-threaded Mode - one thread per connection
 DBI supports threads in perl 5.6 but recent 5.8.x recommended
 Threads are still not recommended for production use with the DBI

 Forking Mode - one process per connection
 Most practical mode for UNIX-like systems
 Doesn’t scale well to large numbers of connections
 Fork is emulated on windows using threads - so see above

 Single Connection Mode - only one connection per proxy server process
 Would need to start many processes to allow many connections
 Mainly for testing

Advanced DBI tutorial
© Tim Bunce

July 2007

DBD::Gofer - A better Proxy?

114

DBD::Proxy DBD::Gofer

Supports transactions ✓ ✗(not soon)

Supports very large results ✓ ✗(memory)

Automatic retry supported ✗ ✓
Large test suite ✗ ✓
Minimal round-trips ✗ ✓
Modular & Pluggable classes ✗ ✓
Tunable via Policies and attributes ✗ ✓
Highly Scalable ✗ ✓
Can support client and web caches ✗ ✓ ❨will do❩

Advanced DBI tutorial
© Tim Bunce

July 2007

115

A Gofer Picture

Application

DBI

DBD::Gofer

Pluggable transports
http / ssh / gearman / ...

Pluggable
Policies

DBD::Foo

DBI

DBI::Gofer::Execute

Network

Pluggable transports
http / ssh / gearman / ...

Stateless protocol
enables multiple

servers for scaling
and load balancing

Advanced DBI tutorial
© Tim Bunce

July 2007

116

DBD::Multiplex

 DBD::Multiplex
– Connects to multiple databases (DBI DSN's) at once and returns a single $dbh
– By default, executes any method call on that $dbh on each underlying $dbh in turn

 Can be configured to
– modify (insert, update, …) only master db, select from one replica at random
– modify all databases but select from one ("poor man's replication")
– fallback to alternate database if primary is unavailable
– pick database for select at random to distribute load
– concatenate select results from multiple databases (effectively a 'union' select)
– return row counts/errors from non-select statements as select results

 one row for each underlying database
– May also acquire fancy caching, retry, and other smart logic in the future

 See: http://search.cpan.org/search?dist=DBD-Multiplex*
– developed by Thomas Kishel and Tim Bunce
– (was) currently undergoing a significant redevelopment

Advanced DBI tutorial
© Tim Bunce

July 2007

117

DBI::PurePerl

 Need to use the DBI somewhere where you can’t compile extensions?
 To deliver pure-perl code to clients that might not have the DBI installed?
 On an ISP that won’t let you run extensions?
 On a Palm Pilot?

 The DBI::PurePerl module is an emulation of the DBI written in Perl
 Works with pure-perl drivers, including DBD::...

AnyData, CSV, DBM, Excel, LDAP, mysqlPP, Sprite, XBase, etc.
 plus DBD::Proxy!

 Enabled via the DBI_PUREPERL environment variable:
0 - Disabled
1 - Automatically fall-back to DBI::PurePerl if DBI extension can’t be bootstrapped
2 - Force use of DBI::PurePerl

 Reasonably complete emulation - enough for the drivers to work well
 See DBI::PurePerl documentation for the small-print

Advanced DBI tutorial
© Tim Bunce

July 2007

118

Reference Materials

 http://dbi.perl.org/
– The DBI Home Page

 http://www.perl.com/CPAN/authors/id/TIMB/DBI_IntroTalk_2002.tar.gz
– An “Introduction to the DBI” tutorial, now rather old but still useful

 http://www.perl.com/CPAN/authors/id/TIMB/DBI_WhatsNewTalk_200607.pdf
– Covers changes since “The Book” (DBI-1.14 thru DBI 1.52)

 http://www.perl.com/CPAN/authors/id/TIMB/DBI_AdvancedTalk_200708.pdf
– This “Advanced DBI” tutorial (updated each year)

 http://www.oreilly.com/catalog/perldbi/
– or http://www.amazon.com/exec/obidos/ASIN/1565926994/dbi
– “Programming the Perl DBI” - The DBI book, but based on DBI 1.14

 http://dbi.perl.org/donate
– Donate money to the DBI Development fund via The Perl Foundation

The end.

Till next year…

Meanwhile, please help me by filling out an evaluation form...

