
Advanced Perl DBI

Making data work for you

by Tim Bunce

August 2006 - DBI 1.52

Advanced DBI tutorial

© Tim Bunce
August 2006

2

Topical Topics

! Speed Speed Speed!

! Handling handles and binding values

! Error checking and error handling

! Transactions

! Architecture and Tracing

! DBI for the web

! Bulk operations

! Tainting

! Handling LONG/BLOB data

! Portability

! Proxy power and flexible multiplex

! What’s planned

Advanced DBI tutorial

© Tim Bunce
August 2006

3

Trimmed Topics and Tips

! Lack of time prevents the inclusion of ...
" Details of issues relating to specific databases and drivers

– (other than where used as examples of general issues)

– each driver would warrant a tutorial of its own!

" Non-trivial worked examples

" Handy DBIx::* and other DBI related modules

" … and anything I’d not finished implementing when this was written …

! But I hope you’ll agree that there’s ample information
" in the following ~100 slides…

! Tips for those attending the conference tutorial:
" Doodle notes from my whitterings about the ‘whys and wherefores’ on your

printed copy of the slides as we go along...

Advanced DBI tutorial

© Tim Bunce
August 2006

4

The DBI - What’s it all about?

! The Perl DBI defines and implements an interface to databases

" Plug-in driver modules do the database-specific work

" DBI provides default methods, functions, tools etc for drivers

" Not limited to the lowest common denominator

! The Perl DBI has built-in…

" Automatic error checking

" Detailed call tracing/debugging

" Flexible call profiling/benchmarking

! Designed and built for speed

Advanced DBI tutorial

© Tim Bunce
August 2006

5

DBI Module

Perl Application

DBD::OtherDBD::InformixDBD::Oracle

Oracle Server Informix Server Other Server

A picture is worth?

Speed Speed Speed!

What helps,what doesn't,

and how to measure it

Advanced DBI tutorial

© Tim Bunce
August 2006

7

Give me speed!

! DBI was designed for speed from day one

! DBI method dispatcher written in hand-crafted XS/C

! Dispatch to XS driver method calls is specially optimized

! Cached attributes returned directly by DBI dispatcher

! DBI overhead is generally insignificant

– So we'll talk about other speed issues instead ...

Advanced DBI tutorial

© Tim Bunce
August 2006

8

Partition for speed

! Start at the beginning
" Pick the right database for the job, if you have the choice.
" Understand the performance issues in schema design.

! Application partitioning: Do What Where?
" Work close to the data

– Moving data to/from the client is always expensive

– Consider latency as well as bandwidth

– Use stored procedures where appropriate

– Do more in SQL where appropriate - get a good book

" Multiple simple queries with 'joins' in Perl may be faster.

" Proprietary bulk-load is almost always faster than Perl.
" Caching is valuable, in memory or DBM file etc, e.g. Memoize.pm

" Mix 'n Match techniques as needed
– experiment and do your own benchmarks

.

Advanced DBI tutorial

© Tim Bunce
August 2006

9

Prepare for speed

! prepare() - what happens in the server...
– Receive and parse and compile the SQL statement into internal form

– Get details for all the selected tables

– Check access rights for each

– Get details for all the selected fields

– Check data types in expressions

– Get details for the indices on all the fields in where/join clauses

– Develop an optimised query 'access plan' for best execution

– Return a handle for all this cached information

" This can be an expensive process

– especially the 'access plan’ for a complex multi-table query

" Some databases, like MySQL, don't cache the information

– but have simpler and faster, but less powerful, plan creation

.

Advanced DBI tutorial

© Tim Bunce
August 2006

10

The best laid plans

! Query optimisation is hard
– Intelligent high quality cost based query optimisation is really hard!

! Know your optimiser
– Oracle, Informix, Sybase, DB2, SQL Server etc. all slightly different.

! Check what it's doing
– Use tools to see the plans used for your queries - very helpful

! Help it along
" Most 'big name' databases have a mechanism to analyse and store the key

distributions of indices to help the optimiser make good plans.

– Important for tables with ‘skewed’ (uneven) key distributions

– Beware: keep it fresh, old key distributions might be worse than none

" Some also allow you to embed 'hints' into the SQL as comments

– Beware: take it easy, over hinting hinders dynamic optimisation

.

access

Advanced DBI tutorial

© Tim Bunce
August 2006

11

MySQL’s EXPLAIN PLAN

! To generate a plan:
EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

! The plan is described using results like this:
TABLE TYPE POSSIBLE_KEYS KEY KEY_LEN REF ROWS EXTRA
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC,ClientID,ActualPC ActualPC 15 et.EMPLOYID 52 where used
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Advanced DBI tutorial

© Tim Bunce
August 2006

12

Oracle’s EXPLAIN PLAN

! To generate a plan:
 EXPLAIN PLAN SET STATEMENT_ID = 'Emp_Sal’ FOR
 SELECT ename, job, sal, dname
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND NOT EXISTS
 (SELECT * FROM salgrade
 WHERE emp.sal BETWEEN losal AND hisal);

! That writes plan details into a table which can be queried to yield results like this:
ID PAR Query Plan
--- --- --
 0 Select Statement Cost = 69602
 1 0 Nested Loops
 2 1 Nested Loops
 3 2 Merge Join
 4 3 Sort Join
 5 4 Table Access Full T3
 6 3 Sort Join
 7 6 Table Access Full T4
 8 2 Index Unique Scan T2
 9 1 Table Access Full T1

Advanced DBI tutorial

© Tim Bunce
August 2006

13

Advanced DBI tutorial

© Tim Bunce
August 2006

14

Changing plans (hint hint)

! Most database systems provide a way to influence the execution plan
" typically via ‘hints’

! Oracle supports a very large and complex range of hints
" Hints must be contained within special comments /*+ … */

 SELECT /*+ INDEX(table1 index1) */ foo, bar
 FROM table1 WHERE key1=1 AND key2=2 AND key3=3;

! MySQL has a very limited set of hints
" Hints can optionally be placed inside comments /*! … */

 SELECT foo, bar FROM table1 /*! USE INDEX (key1,key2) */
 WHERE key1=1 AND key2=2 AND key3=3;

! Use sparingly! Generally as a last resort.
" A hint may help now but later schema (or data) changes may make it worse.
" Usually best to let the optimizer do its job

.

Advanced DBI tutorial

© Tim Bunce
August 2006

15

Respect your server’s SQL cache

! Optimised Access Plan and related data can be cached within server
– Oracle: automatic caching, shared across connections, cache keyed by SQL.
– MySQL: explicit but hidden by DBD::mysql. Not shared, even with a connection.

! Compare do("insert … $id");

 with do("insert … ?", undef, $id);

! Without placeholders, SQL string varies each time
– so no matching statement can be found in the servers' SQL cache
– so time is wasted creating a new access plan
– the new statement and access plan are added to cache
– so the cache fills and other statements get pushed out
– on a busy system this can lead to ‘thrashing’

! Oracle now has a way to avoid/reduce this problem
– it can effectively edit the SQL to replace literal constants with placeholders
– but quality of the execution plan can suffer

! For Mysql do() always causes re-planning. Must use prepare() to reuse.

Advanced DBI tutorial

© Tim Bunce
August 2006

16

Hot handles

! Avoid using $dbh->do(…) in a speed-critical loop

" It’s usually creating, preparing and destroying a statement handle each time

" Use $sth = $dbh->prepare(…)and $sth->execute() instead

! Using prepare() moves work out of the loop

" Does as much preparation for later execute() as possible

" So execute() has as little work to do as possible

! For example… convert looped

 $dbh->do("insert … ?", undef, $id)

 into $sth = $dbh->prepare("insert … ?”) before the loop

 and $sth->execute($id) inside the loop

! This often gives a significant performance boost

– even where placeholders are emulated, such as DBD::mysql with mysql 4.0

– because it avoids statement handle creation overhead
.

Advanced DBI tutorial

© Tim Bunce
August 2006

17

Sling less for speed

! while(@row = $sth->fetchrow_array) { }
" one column: 51,155 fetches per second
" 20 columns: 24,032 fetches per second

! while($row = $sth->fetchrow_arrayref) { }
" one column: 58,653 fetches per second - approximately 12% faster
" 20 columns: 49,390 fetches per second - approximately 51% faster

! while($row = shift(@$rowcache)
 || shift(@{$rowcache=$sth->fetchall_arrayref(undef, $max_rows)})) { }
" one column: 348,140 fetches per second - by far the fastest!
" 20 columns: 42,128 fetches per second - now slower than fetchrow_arrayref!
" Why? Balance time saved making fewer calls with time spent managing more memory
" Do your own benchmarks to find what works best for your situations

! Notes:
" Tests used DBD::mysql on 100,000 rows with fields 9 chars each. $max_rows=1000;
" Time spent inside fetchrow_* method is ~0.000011s (~90,000 per second) on old slow cpu.

Advanced DBI tutorial

© Tim Bunce
August 2006

18

Bind those columns!

! Compare

while($row = $sth->fetchrow_arrayref) {

 print “$row->[0]: $row->[1]\n”;

}

with

$sth->bind_columns(\$key, \$value);

while($sth->fetchrow_arrayref) {

 print “$key: $value\n”;

}

! No row assignment code!

! No column access code!

 ... just magic

Advanced DBI tutorial

© Tim Bunce
August 2006

19

Do more with less!

! Reduce the number of DBI calls
– The DBI is fast -- but it isn’t free!

! Using RaiseError is faster than checking return values
– and much faster than checking $DBI::err or $h->err

! Use fetchrow_* in preference to fetchall_*
– unless you need to keep all the rows

! Using fetchall_arrayref (or selectall_arrayref) is now much faster
– if using a driver extension compiled with the DBI’s Driver.xst wrapper (most are)

– because the loop is written in C and doesn’t make a method call per row

! Using fetchall_arrayref is possible for very large result sets
– new $max_rows parameter limits rows returned (and memory consumed)

– just add an outer loop to process the results in ‘batches’, or do it in-line:

$row = shift(@$cache)

 || shift @{$cache=$sth->fetchall_arrayref(undef, 1000)};

Advanced DBI tutorial

© Tim Bunce
August 2006

20

Speedy Summary

! Think about the big picture first
– Choice of tools, schema design, partitioning, latency, etc.

! Check the access plans for your statements
– Teach your database about any uneven key distributions

! Use placeholders - where supported
– Especially for any statements that will be executed often with varying values

! Replace do() in a loop

– with prepare() and execute()

! Sling less data for faster row fetching
– Or sling none per row by binding columns to perl variables

! Do more with less by using the DBI in the most efficient way
– Make fewer, better, DBI method calls

! Other important things to consider…
– your perl code, plus hardware, operating system, and database configuration etc.

-

Advanced DBI tutorial

© Tim Bunce
August 2006

21

Optimizing Perl - Some Tips

! Perl is fast, but not that fast...

! Still need to take care with apparently simple things in 'hot' code
– Function/method calls have significant overheads per call.

– Copying data also isn't cheap, especially long strings (allocate and copy)

– Perl compiles to 'op codes' then executes them in a loop...

– The more ops, the slower the code (all else being roughly equal).

– Try to do more with fewer ops. Especially if you can move loops into ops.

! Key techniques include:
– Caching at many levels, from common sub-expression elimination to web caching

– Functional programming: @result = map { … } grep { … } @data;

! But don't get carried away... only optimize hot code, and only if needed
– Don't optimize for performance at the cost of maintenance. Learn perl idioms.

– Beware "Compulsive Tuning Disorder" - Gaja Krishna Vaidyanatha

– And remember that "Premature optimization is the root of all evil" - Donald Knuth

Profiling DBI Performance

Time flies like an arrow

(fruit flies like a banana)

Advanced DBI tutorial

© Tim Bunce
August 2006

23

How fast was that?

! The DBI has performance profiling built in

! Overall summary:
$ DBI_PROFILE=1 ex/profile.pl

DBI::Profile: 0.190639s 20.92% (219 calls) profile.pl @ 2006-07-24 15:47:07

! Breakdown by statement:
$ DBI_PROFILE=’!Statement’ ex/profile.pl

DBI::Profile: 0.206872s 20.69% (219 calls) profile.pl @ 2006-07-24 15:44:37

'' =>

 0.001403s / 9 = 0.000156s avg (first 0.001343s, min 0.000002s, max 0.001343s)

'CREATE TABLE ex_profile (a int)' =>

 0.002503s

'INSERT INTO ex_profile (a) VALUES (?)' =>

 0.193871s / 100 = 0.001939s avg (first 0.002119s, min 0.001676s, max 0.002251s)

'SELECT a FROM ex_profile' =>

 0.004776s / 108 = 0.000044s avg (first 0.000700s, min 0.000004s, max 0.003129s)

Advanced DBI tutorial

© Tim Bunce
August 2006

$ DBI_PROFILE='!Statement:!MethodName' ex/profile.pl

DBI::Profile: 0.203922s (219 calls) profile.pl @ 2006-07-24 15:29:29

'' =>

 'FETCH' =>

 0.000002s

 'STORE' =>

 0.000039s / 5 = 0.000008s avg (first 0.000019s, min 0.000002s, max 0.000019s)

 'connect' =>

 0.001336s

'CREATE TABLE ex_profile (a int)' =>

 'do' =>

 0.002324s

'INSERT INTO ex_profile (a) VALUES (?)' =>

 'do' =>

 0.192104s / 100 = 0.001921s avg (first 0.001929s, min 0.001520s, max 0.002699s)

'SELECT a FROM ex_profile' =>

 'execute' =>

 0.000082s

 'fetchrow_array' =>

 0.000667s / 101 = 0.000007s avg (first 0.000010s, min 0.000006s, max 0.000018s)

 'prepare' =>

 0.000122s

 'selectall_arrayref' =>

 0.000676s

 'selectall_hashref' =>

 0.003452s
24

Advanced DBI tutorial

© Tim Bunce
August 2006

25

Profile of a Profile

! Profiles ‘top level’ calls from application into DBI

! Profiling is controlled by, and collected into, $h->{Profile} attribute

! Child handles inherit reference to parent $h->{Profile}
– So child handle activity is aggregated into parent

! When enabled by DBI_PROFILE env var
– uses a single $h->{Profile} is shared by all handles

– so all activity is aggregated into a single data tree

! Data is dumped when the $h->{Profile} object is destroyed

Advanced DBI tutorial

© Tim Bunce
August 2006

Profile Path ! Profile Data

• The Path determines where each sample is accumulated within the Data

$h->{Profile}->{Path} = []

$h->{Profile}->{Data} = [...accumulated sample data...]

$h->{Profile}->{Path} = [“!MethodName”]

$h->{Profile}->{Data} = { “prepare” } -> [...]

 { “execute” } -> [...]

 { ... } -> [...]

$h->{Profile}->{Path} = [“!Statement”, “!MethodName”]

$h->{Profile}->{Data} = { “INSERT ...” } -> { “prepare” } -> [...]

 -> { “execute” } -> [...]

 { “SELECT ...” } -> { “prepare” } -> [...]

 -> { “execute” } -> [...]
26

Advanced DBI tutorial

© Tim Bunce
August 2006

Profile Path Elements

27

Kind Examples Results

“{AttributeName}” “{Statement}”

“{Username}”

“{AutoCommit}”

“{private_attr}”

“SELECT ...”

“timbunce”

“1”

“the value of private_attr”

“!Magic” “!Statement”

“!MethodName”

“!MethodClass”

“!File”

“!Caller2”

“SELECT ...”

“selectrow_array”

“DBD::Pg::db::selectrow_array”

“MyFoo.pm”

“MyFoo.pm line 23 via Bar.pm line 9”

\&code_ref sub { “bar” } “bar”

“&subname”

anything else “foo” “foo”

Advanced DBI tutorial

© Tim Bunce
August 2006

“!Statement” vs “{Statement}”

! “{Statement}” is always the value of the Statement attribute
– Fine for statement handle

– For database handles it’s the last statement executed

– That’s often not useful, or even misleading, for profiling

! “!Statement” is smarter
– Is an empty string for methods that are unrelated to current statement

! ping, commit, rollback, quote, dbh attribute FETCH & STORE, etc.

– so you get more accurate separation of profile data using “!Statement”

28

Advanced DBI tutorial

© Tim Bunce
August 2006

Profile Leaf Node Data

! Each leaf node is a ref to an array:

 [

 106, # 0: count of samples at this node

 0.0312958955764771, # 1: total duration

 0.000490069389343262, # 2: first duration

 0.000176072120666504, # 3: shortest duration

 0.00140702724456787, # 4: longest duration

 1023115819.83019, # 5: time of first sample

 1023115819.86576, # 6: time of last sample

]

" First sample to create the leaf node populates all values

" Later samples reaching that node always update elements 0, 1, and 6

" and may update 3 or 4 depending on the duration of the sampled call

29

Advanced DBI tutorial

© Tim Bunce
August 2006

Working with profile data

! To aggregate sample data for any part of the tree
– to get total time spent inside the DBI

– and return a merge all those leaf nodes

$time_in_dbi = dbi_profile_merge(my $totals=[], @$leaves);

! To aggregate time in DBI since last measured
– For example per-httpd request

my $time_in_dbi = 0;

if (my $Profile = $dbh->{Profile}) { # if profiling enabled

 $time_in_dbi = dbi_profile_merge([], $Profile->{Data});

 $Profile->{Data} = undef; # reset the profile Data

}

add $time_in_dbi to httpd log

30

Advanced DBI tutorial

© Tim Bunce
August 2006

Profile something else

! Adding your own samples

use DBI::Profile (dbi_profile dbi_time);

my $t1 = dbi_time(); # floating point high-resolution time

 ... execute code you want to profile here ...

my $t2 = dbi_time();

dbi_profile($h, $statement, $method, $t1, $t2);

31

Advanced DBI tutorial

© Tim Bunce
August 2006

32

Profile specification

! Profile specification
" <path> / <class> / <args>

" DBI_PROFILE='!Statement:!MethodName/DBI::ProfileDumper::Apache/arg1:arg2:arg3'

" $h->{Profile} = '...same...';

! Class
" Currently only controls output formatting

" Other classes should subclass DBI::Profile

! DBI::Profile is the default
" provides a basic summary for humans

" large outputs are not easy to read

" can’t be filtered or sorted

Advanced DBI tutorial

© Tim Bunce
August 2006

33

dbiprof

! DBI::ProfileDumper

" writes profile data to dbi.prof file for analysis

! DBI::ProfileDumper::Apache

" for mod_perl, writes a file per httpd process/thread

! DBI::ProfileData
" reads and aggregates dbi.prof files

" can remap and merge nodes in the tree

! dbiprof

" reads, summarizes, and reports on dbi.prof files
" by default prints nodes sorted by total time

" has options for filtering and sorting

Advanced DBI tutorial

© Tim Bunce
August 2006

Managing statement variations

! For when placeholders aren’t being used or there are tables with numeric suffixes.

! A ‘&norm_std_n3’ in the Path maps to ‘!Statement’ edited in this way:

 s/\b\d+\b/<N>/g; # 42 -> <N>

 s/\b0x[0-9A-Fa-f]+\b/<N>/g; # 0xFE -> <N>

 s/'.*?'/'<S>'/g; # single quoted strings (doesn't handle escapes)

 s/".*?"/"<S>"/g; # double quoted strings (doesn't handle escapes)

 # convert names like log20001231 into log<N>

 s/([a-z_]+)(\d{3,})\b/${1}<N>/ieg;

 # abbreviate massive "in (...)" statements and similar

 s!((\s*<[NS]>\s*,\s*){100,})!sprintf("$2,<repeated %d times>",length($1)/2)!eg;

! It’s aggressive and simplistic but usually very effective.

! You can define your own subs in the DBI::ProfileSubs namespace
34

Attribution

Names and Places

Advanced DBI tutorial

© Tim Bunce
August 2006

36

Attribution - For Handles

! Two kinds of attributes: Handle Attributes and Method Attributes

! A DBI handle is a reference to a hash

! Handle Attributes can be read or set by accessing the hash via the reference
$h->{AutoCommit} = 0;

$autocomitting = $h->{AutoCommit};

! Some attributes are read-only
$sth->{NUM_OF_FIELDS} = 42; # fatal error

! Using an unknown attribute triggers a warning

 $sth->{AutoCommat} = 42; # triggers a warning

 $autocomitting = $sth->{AutoCommat}; # triggers a warning

– driver-private attributes (which have lowercase names) do not trigger a warning

Advanced DBI tutorial

© Tim Bunce
August 2006

37

Attribution - For Methods

! Two kinds of attributes: Handle Attributes and Method Attributes

! Many DBI methods take an ‘attributes’ parameter

– in the form of a reference to a hash of key-value pairs

! The attributes parameter is typically used to provide ‘hints’ to the driver

– Unrecognised attributes are simply ignored

– So invalid attribute name (like typos) won't be caught

! The method attributes are generally unrelated to handle attributes
– The connect() method is an exception

– In DBI v2 prepare() will also accept handle attributes for the new handle

$sth = $dbh->prepare($sql, { RaiseError => 0 });

Advanced DBI tutorial

© Tim Bunce
August 2006

38

What’s in a name?

! The letter case used for attribute names is significant
– plays an important part in the portability of DBI scripts

! Used to signify who defined the meaning of that name and its values

 Case of name Has a meaning defined by

 UPPER_CASE Formal standards, e.g., X/Open, SQL92 etc (portable)

 MixedCase DBI API (portable), underscores are not used.

 lower_case Driver specific, ‘private’ attributes (non-portable)

! Each driver has its own prefix for its private method and handle attributes

– Ensures two drivers can’t define different meanings for the same attribute

$sth->bind_param(1, $value, { ora_type => 97, ix_type => 42 });

Handling your Handles

Get a grip

Advanced DBI tutorial

© Tim Bunce
August 2006

40

Let the DBI cache your handles

! Sometimes it's not easy to hold all your handles
– e.g., library code to lookup values from the database

! The prepare_cached() method
– gives you a client side statement handle cache:

sub lookup_foo {

 my ($dbh, $id) = @_;

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

! On later calls returns the previously cached handle
– for the given statement text and any method attributes

! Can avoid the need for global statement handle variables
– which can cause problems in some situations, see later

Advanced DBI tutorial

© Tim Bunce
August 2006

41

Some prepare_cached() issues

! A cached statement handle may still be Active

" because some other code is still fetching from it

" or didn't fetch all the rows (and didn't didn't call finish)

" perhaps due to an exception

! Default behavior for prepare_cached()

" if Active then warn and call finish()

! Rarely an issue in practice

! But if it is...
" Alternative behaviors are available via the $is_active parameter

$sth = $dbh->prepare_cached($sql, \%attr, $if_active)

" See the docs for details

Advanced DBI tutorial

© Tim Bunce
August 2006

42

Keep a handle on your databases

! Connecting to a database can be slow
– Oracle especially so

! Try to connect once and stay connected where practical
– We'll discuss web server issues later

! The connect_cached() method …

" Acts like prepare_cached() but for database handles

" Like prepare_cached(), it’s handy for library code

" It also checks the connection and automatically reconnects if it's broken

" Works well combined with prepare_cached(), see following example

.

Advanced DBI tutorial

© Tim Bunce
August 2006

43

A connect_cached() example

! Compare and contrast...
my $dbh = DBI->connect(…);

sub lookup_foo_1 {

 my ($id) = @_;

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

with...
sub lookup_foo_2 {

 my ($id) = @_;

 my $dbh = DBI->connect_cached(…);

 $sth = $dbh->prepare_cached("select foo from table where id=?");

 return $dbh->selectrow_array($sth, $id);

}

Clue: what happens if the database is restarted?

Advanced DBI tutorial

© Tim Bunce
August 2006

44

Some connect_cached() issues

! Because connect_cached() may return a new connection...

" it’s important to specify all significant attributes within the connect() call

" e.g., AutoCommit, RaiseError, PrintError

" So pass the same set of attributes into all connect calls

! Similar, but not quite the same as Apache::DBI
" Doesn’t disable the disconnect() method.

! The caches can be accessed via the CachedKids handle attribute

" $dbh->{CachedKids} - for prepare_cached()

" $dbh->{Driver}->{CachedKids} - for connect_cached()

" Could also be tied to implement LRU and other size-limiting caching strategies

tie %{$dbh->{CachedKids}}, SomeCacheModule;

_

Binding (Value Bondage)

Placing values in holders

Advanced DBI tutorial

© Tim Bunce
August 2006

46

First, the simple stuff...

! After calling prepare() on a statement with placeholders:

$sth = $dbh->prepare(“select * from table where k1=? and k2=?”);

! Values need to be assigned (‘bound’) to each placeholder before the
database can execute the statement

! Either at execute, for simple cases:
$sth->execute($p1, $p2);

! or before execute:

$sth->bind_param(1, $p1);

$sth->bind_param(2, $p2);

$sth->execute;

Advanced DBI tutorial

© Tim Bunce
August 2006

47

Then, some more detail...

! If $sth->execute(…) specifies any values, it must specify them all

! Bound values are sticky across multiple executions:
$sth->bind_param(1, $p1);

foreach my $p2 (@p2) {

 $sth->bind_param(2, $p2);

 $sth->execute;

}

! The currently bound values are retrievable using:
%bound_values = %{ $sth->{ParamValues} };

– Relatively new DBI feature, added in 1.28, not implemented by all drivers yet

.

Advanced DBI tutorial

© Tim Bunce
August 2006

48

Your TYPE or mine?

! Sometimes the data type for bind values needs to be specified

use DBI qw(:sql_types);

– to import the type constants

$sth->bind_param(1, $value, { TYPE => SQL_INTEGER });

– to specify the INTEGER type

– which can be abbreviated to:

$sth->bind_param(1, $value, SQL_INTEGER);

! To just distinguish numeric versus string types, try
$sth->bind_param(1, $value+0); # bind as numeric value

$sth->bind_param(1, ”$value”); # bind as string value

– Works because perl values generally know if they are strings or numbers. So...

– Generally the +0 or ”” isn’t needed because $value has the right ‘perl type’ already

Advanced DBI tutorial

© Tim Bunce
August 2006

49

Got TIME for a DATE?

! Date and time types are strings in the native database format
" many valid formats, some incompatible or ambiguous 'MM/DD/YYYY' vs 'DD/MM/YYYY'

! Obvious need for a common format
" The SQL standard (ISO 9075) uses 'YYYY-MM-DD' and 'YYYY-MM-DD HH:MM:SS'

! DBI now says using a date/time TYPE mandates ISO 9075 format
$sth->bind_param(1, "2004-12-31", SQL_DATE);

$sth->bind_param(2, "2004-12-31 23:59:59", SQL_DATETIME);

$sth->bind_col(1, \$foo, SQL_DATETIME); # for selecting data

! Driver is expected to convert to/from native database format
" New feature, as of DBI 1.43, not yet widely supported

.

Advanced DBI tutorial

© Tim Bunce
August 2006

50

Some TYPE gotchas

! Bind TYPE attribute is just a hint
– and like all hints in the DBI, they can be ignored

– the driver is unlikely to warn you that it's ignoring an attribute

! Many drivers only care about the number vs string distinction
– and ignore other kinds of TYPE value

! For some drivers/databases that do pay attention to the TYPE…
– using the wrong type can mean an index on the value field isn’t used

– or worse, may alter the effect of the statement

! Some drivers let you specify private types
$sth->bind_param(1, $value, { ora_type => 97 });

-

Error Checking & Error Handling

To err is human,

to detect, divine!

Advanced DBI tutorial

© Tim Bunce
August 2006

52

The importance of error checking

! Errors happen!
" Failure happens when you don't expect errors!

– database crash / network disconnection

– lack of disk space for insert or select (sort space for order by)

– server math error on select (divide by zero after fetching 10,000 rows)

– and maybe, just maybe, errors in your own code [Gasp!]

" Beat failure by expecting errors!

" Detect errors early to limit effects

– Defensive Programming, e.g., check assumptions

– Through Programming, e.g., check for errors after fetch loops

" (and undefined values are your friends: always enable warnings)
.

Advanced DBI tutorial

© Tim Bunce
August 2006

53

Error checking - ways and means

! Error checking the hard way...

$h->method or die "DBI method failed: $DBI::errstr";

$h->method or die "DBI method failed: $DBI::errstr";

$h->method or die "DBI method failed: $DBI::errstr";

! Error checking the smart way...

$h->{RaiseError} = 1;

$h->method;

$h->method;

$h->method;

Advanced DBI tutorial

© Tim Bunce
August 2006

54

Handling errors the smart way

! Setting RaiseError make the DBI call die for you

! For simple applications immediate death on error is fine
– The error message is usually accurate and detailed enough

– Better than the error messages some developers use!

! For more advanced applications greater control is needed, perhaps:
– Correct the problem and retry

– or, Fail that chunk of work and move on to another

– or, Log error and clean up before a graceful exit

– or, whatever else to need to do

! Buzzwords:

– Need to catch the error exception being thrown by RaiseError

.

Advanced DBI tutorial

© Tim Bunce
August 2006

55

Catching the Exception

! Life after death
$h->{RaiseError} = 1;

eval {

 foo();

 $h->method; # if it fails then the DBI calls die

 bar($h); # may also call DBI methods

};

if ($@) { # $@ holds error message

 ... handle the error here …

}

! Bonus

– Other, non-DBI, code within the eval block may also raise an exception

– that will also be caught and can be handled cleanly

.

Advanced DBI tutorial

© Tim Bunce
August 2006

56

Picking up the Pieces

! So, what went wrong?
$@

– holds the text of the error message
if ($DBI::err && $@ =~ /^(\S+) (\S+) failed: /)

– then it was probably a DBI error

– and $1 is the driver class (e.g. DBD::foo::db), $2 is the name of the method (e.g. prepare)

$DBI::lasth

– holds last DBI handle used (not recommended for general use)

$h->{Statement}

– holds the statement text associated with the handle (even if it’s a database handle)

! $h->{ShowErrorStatement} = 1
– appends $h->{Statement} to RaiseError/PrintError messages:

– DBD::foo::execute failed: duplicate key [for ``insert …’’]

– for statement handles it also includes the $h->{ParamValues} if available.

– Makes error messages much more useful. Better than using $DBI::lasth

– Many drivers should enable it by default. DBI v2 will. Inherited by child handles.

Advanced DBI tutorial

© Tim Bunce
August 2006

57

Custom Error Handling

! Don’t want to just Print or Raise an Error?

" Now you can Handle it as well…

$h->{HandleError} = sub { … };

! The HandleError code
" is called just before PrintError/RaiseError are handled

" it’s passed

– the error message string that RaiseError/PrintError would use

– the DBI handle being used

– the first value being returned by the method that failed (typically undef)

" if it returns false then RaiseError/PrintError are checked and acted upon as normal

! The handler code can
" alter the error message text by changing $_[0]

" use caller() or Carp::confess() or similar to get a stack trace

" use Exception or a similar module to throw a formal exception object

Advanced DBI tutorial

© Tim Bunce
August 2006

58

More Custom Error Handling

! It is also possible for HandleError to hide an error, to a limited degree

– use set_err() to reset $DBI::err and $DBI::errstr

– alter the return value of the failed method

$h->{HandleError} = sub {

 my ($errmsg, $h) = @_;

 return 0 unless $errmsg =~ /^\S+ fetchrow_arrayref failed:/;

 return 0 unless $h->err == 1234; # the error to 'hide'

 $h->set_err(0,""); # turn off the error

 $_[2] = [...]; # supply alternative return value by altering parameter

 return 1;

};

! Only works for methods which return a single value and is hard to make reliable
(avoiding infinite loops, for example) and so isn't recommended for general use!

– If you find a good use for it then please let me know.

_

Advanced DBI tutorial

© Tim Bunce
August 2006

59

Information and Warnings

! Drivers can indicate Information and Warning states in addition to Error states
" Uses false-but-defined values of $h->err and $DBI::err

" Zero "0" indicates a "warning"

" Empty "" indicates "success with information" or other messages from database

! Drivers should use $h->set_err(…) method to record info/warn/error states
" implements logic to correctly merge multiple info/warn/error states

" info/warn/error messages are appended to errstr with a newline

" $h->{ErrCount} attribute is incremented whenever an error is recorded

! The $h->{HandleSetErr} attribute can be used to influence $h->set_err()

" A code reference that's called by set_err and can edit its parameters

" So can promote warnings/info to errors or demote/hide errors etc.

" Called at point of error from within driver, unlike $h->{HandleError}

! The $h->{PrintWarn} attribute acts like $h->{PrintError} but for warnings

" Default is on

Transactions

To do or to undo,

that is the question

Advanced DBI tutorial

© Tim Bunce
August 2006

61

Transactions - Eh?

! Far more than just locking

! The A.C.I.D. test

– Atomicity - Consistency - Isolation - Durability

! True transactions give true safety

– even from power failures and system crashes!

– Incomplete transactions are automatically rolled-back by the database
server when it's restarted.

! Also removes burden of undoing incomplete changes

! Hard to implement (for the vendor)

– and can have significant performance cost

! A very large topic worthy of an entire tutorial

Advanced DBI tutorial

© Tim Bunce
August 2006

62

Transactions - Life Preservers

! Text Book:

– system crash between one bank account being debited and another being credited.

! Dramatic:

– power failure during update on 3 million rows when only part way through.

! Real-world:

– complex series of inter-related updates, deletes and inserts on many separate tables
fails at the last step due to a duplicate unique key on an insert.

! Locking alone won’t help you in any of these situations

– (And locking with DBD::mysql < 2.1027 is unsafe due to auto reconnect)

! Transaction recovery would handle all these situations - automatically
– Makes a system far more robust and trustworthy over the long term.

! Use transactions if your database supports them.
– If it doesn't and you need them, switch to a different database.

.

Advanced DBI tutorial

© Tim Bunce
August 2006

63

Transactions - How the DBI helps

! Tools of the trade:
" Set AutoCommit off

" Set RaiseError on

" Wrap eval { … } around the code

" Use $dbh->commit; and $dbh->rollback;

! Disable AutoCommit via $dbh->{AutoCommit}=0 or $dbh->begin_work;

– to enable use of transactions

! Enable RaiseError via $dbh->{RaiseError} = 1;

– to automatically 'throw an exception' when an error is detected

! Add surrounding eval { … }

– catches the exception, the error text is stored in $@

! Test $@ and then $dbh->rollback() if set

– note that a failed statement doesn’t automatically trigger a transaction rollback

Advanced DBI tutorial

© Tim Bunce
August 2006

64

Transactions - Example code

$dbh->{RaiseError} = 1;

$dbh->begin_work; # AutoCommit off till commit/rollback

eval {

 $dbh->method(…); # assorted DBI calls

 foo(...); # application code

 $dbh->commit; # commit the changes

};

if ($@) {

 warn "Transaction aborted because $@";

 $dbh->rollback;

 ...

}

.

Advanced DBI tutorial

© Tim Bunce
August 2006

65

Transactions - Further comments

! The eval { … } catches all exceptions
– not just from DBI calls. Also catches fatal runtime errors from Perl

! Put commit() inside the eval

– ensures commit failure is caught cleanly

– remember that commit itself may fail for many reasons

! Don't forget rollback() and that rollback() may also fail

– due to database crash or network failure etc.

– so you'll probably want to use eval { $dbh->rollback };

! Other points:

– Always explicitly commit or rollback before disconnect

– Destroying a connected $dbh should always rollback

– END blocks can catch exit-without-disconnect to rollback and disconnect cleanly

– You can use ($dbh && $dbh->{Active}) to check if still connected

-

Intermission?

Wheels within Wheels

The DBI architecture

and how to watch it at work

Advanced DBI tutorial

© Tim Bunce
August 2006

68

Setting the scene

! Inner and outer worlds
$ Application and Drivers

! Inner and outer handles
$ DBI handles are references to tied hashes

! The DBI Method Dispatcher
$ gateway between the inner and outer worlds, and the heart of the DBI

… Now we'll go all deep and visual for a while...

Advanced DBI tutorial

© Tim Bunce
August 2006

69

Architecture of the DBI classes #1

DBD::B::dr DBD::B::db DBD::B::st

DBD::A::dr DBD::A::db DBD::A::st

Parallel handle-type classes implemented by drivers.

‘’outer’’

DBD::_::dr DBD::_::db DBD::_::st

‘’inner’’

DBD::_::common
Base classes
providing
fallback
behavior.

DBI

DBI::dr DBI::db DBI::st

DBI::xx handle classes visible to applications
(these classes are effectively ‘empty’):

Alternative db and st classes are used if the
DBI is being subclassed.

MyDb::db MyDb::st

MyDb

Advanced DBI tutorial

© Tim Bunce
August 2006

method1

prepare

do

method4

method5

DBI::_::dbDBI::db

70

Architecture of the DBI classes #2

method1

prepare

method3

method4

method1

do

method4

DBD::A::db

DBD::B::db

DBD::A::st

method
7

method
7

DBI::st

Application
makes calls
to methods
using $dbh
DBI database
handle
object

method1

prepare

do

method4

method5

method6

‘’outer’’

dispatch

DBI

method4

method6

DBI::_::common

‘’inner’’

Advanced DBI tutorial

© Tim Bunce
August 2006

71

Anatomy of a DBI handle

Handle
Ref.

DBI
Magic

‘’outer’’ ‘’inner’’

struct imp_dbh_t {

 struct dbih_dbc_t com;

 … implementers …
 … own data ...

}

struct dbih_dbc_t {

 … DBI data ...

}

Hash
(tied)

DBI::db

Tie
Magic

Hash

DBI::db

Attribute
Cache

Advanced DBI tutorial

© Tim Bunce
August 2006

72

Method call walk-through

! Consider a simple prepare call:
 $dbh->prepare(…)

! $dbh is reference to an object in the DBI::db class (regardless of driver)

! The DBI::db::prepare method is an alias for the DBI dispatch method

! DBI dispatch calls the driver’s own prepare method something like this:
 my $inner_hash_ref = tied %$dbh;

 my $implementor_class = $inner_hash_ref->{ImplementorClass};

 $inner_hash_ref->$implementor_class::prepare(...)

! Driver code gets the inner hash

" so it has fast access to the hash contents without tie overheads

_

Advanced DBI tutorial

© Tim Bunce
August 2006

73

Watching the DBI in action

! DBI has detailed call tracing built-in
" Can be very helpful in understanding application behaviour

" Shows parameters and results

" Has multiple levels of detail

" Can show detailed internal information from the DBI and drivers

" Can be written to a file

! Not used often enough

 Not used often enough

 Not used often enough!

 Not used often enough!

Advanced DBI tutorial

© Tim Bunce
August 2006

74

Enabling tracing

! Per handle
$h->{TraceLevel} = $level;

$h->trace($level);

$h->trace($level, $filename); # $filename used for all handles

" Trace level only affects that handle and any new child handles created from it

" Child handles get trace level of parent in effect at time of creation

" Can be set via DSN: "dbi:Driver(TraceLevel=2):…"

! Global (internal to application)

DBI->trace(...);

" Sets effective global default minimum trace level

! Global (external to application)

" Enabled using DBI_TRACE environment variable

DBI_TRACE=digits same as DBI->trace(digits);

DBI_TRACE=digits=filename same as DBI->trace(digits, filename);

Advanced DBI tutorial

© Tim Bunce
August 2006

75

Our program for today...

#!/usr/bin/perl -w

use DBI;

$dbh = DBI->connect('', '', '', { RaiseError => 1 });

replace_price(split(/\s+/, $_)) while (<STDIN>);

$dbh->disconnect;

sub replace_price {

 my ($id, $price) = @_;

 local $dbh->{TraceLevel} = 1;

 my $upd = $dbh->prepare("UPDATE prices SET price=? WHERE id=?");

 my $ins = $dbh->prepare_cached("INSERT INTO prices (id,price) VALUES(?,?)");

 my $rows = $upd->execute($price, $id);

 $ins->execute($id, $price) if $rows == 0;

}

(The program is a little odd for the sake of producing a small trace output that can illustrate many concepts)

Advanced DBI tutorial

© Tim Bunce
August 2006

76

Trace level 1

! Level 1 shows method returns with first two parameters, results, and line numbers:

 DBI::db=HASH(0x823c6f4) trace level 0x0/1 (DBI 0x0/0) DBI 1.43 (pid 78730)

 <- prepare('UPDATE prices SET price=? WHERE prod_id=?')=

 DBI::st=HASH(0x823a478) at trace-ex1.pl line 10

 <- prepare_cached('INSERT INTO prices (prod_id,price) VALUES(?,?)')=

 DBI::st=HASH(0x823a58c) at trace-ex1.pl line 11

 <- execute('42.2' '1')= 1 at trace-ex1.pl line 12

 <- STORE('TraceLevel' 0)= 1 at trace-ex1.pl line 4

 <- DESTROY(DBI::st=HASH(0x823a478))= undef at trace-ex1.pl line 4

! Level 1 now only shows methods called by application
" not recursive calls made by the DBI or driver

Advanced DBI tutorial

© Tim Bunce
August 2006

77

Trace level 2 and above

! Level 2 adds trace of entry into methods, details of classes, handles, and more
– we’ll just look at the trace for the prepare_cached() call here:

 -> prepare_cached in DBD::_::db for DBD::mysql::db

 (DBI::db=HASH(0x81bcd80)~0x823c6f4

 'INSERT INTO prices (prod_id,price) VALUES(?,?)')

1 -> FETCH for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER 'CachedKids')

1 <- FETCH= undef at DBI.pm line 1507

1 -> STORE for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER 'CachedKids'

 HASH(0x823a5d4))

1 <- STORE= 1 at DBI.pm line 1508

1 -> prepare for DBD::mysql::db (DBI::db=HASH(0x823c6f4)~INNER

 'INSERT INTO prices (prod_id,price) VALUES(?,?)' undef)

1 <- prepare= DBI::st=HASH(0x823a5a4) at DBI.pm line 1519

 <- prepare_cached= DBI::st=HASH(0x823a5a4) at trace-ex1.pl line 11

" Trace level 3 and above shows more internal processing and driver details
" Use $DBI::neat_maxlen to alter truncation of strings in trace output

.

Advanced DBI tutorial

© Tim Bunce
August 2006

78

What’s new with tracing?

! Trace level now split into trace level (0-15) and trace topics
" DBI and drivers can define named trace topics

! New $h->parse_trace_flags("foo|SQL|7")method
" map trace topic names into the corresponding trace flag bits.

! Added automatic calling of parse_trace_flags()

" if setting the trace level to a non-numeric value:
$h->{TraceLevel} = "foo|SQL|7";

DBI->connect("dbi:Driver(TraceLevel=SQL|bar):...", ...);

DBI_TRACE = "foo|SQL|7|baz" # environment variable

! Currently no trace topics have been defined.

DBI for the Web

Hand waving from 30,000 feet

Advanced DBI tutorial

© Tim Bunce
August 2006

80

Web DBI - Connect speed

! Databases can be slow to connect
– Traditional CGI forces a new connect per request

! Move Perl and DBI into the web server
– Apache with mod_perl and Apache::DBI module

– Microsoft IIS with ActiveState's PerlEx

! Connections can then persist and be shared between requests
– Apache::DBI automatically used by DBI if loaded

– No CGI script changes required to get persistence

! Take care not to change the shared session behaviour
– Leave the $dbh and db session in the same state you found it!

! Other alternatives include
– FastCGI, CGI::SpeedyCGI and CGI::MiniSvr

Advanced DBI tutorial

© Tim Bunce
August 2006

81

Web DBI - Too many connections

! Busy web sites run many web server processes
– possibly on many machines...

– Machines * Processes = Many Connections

– Machines * Processes * Users = Very Many Connections

! Limits on database connections

– Memory consumption of web server processes

– Database server resources (memory, threads etc.) or licensing

! So… partition web servers into General and Database groups

! Direct requests that require database access to the Database web servers

– Use Reverse Proxy / Redirect / Rewrite to achieve this

– Allows each subset of servers to be tuned to best fit workload

– And/or be run on appropriate hardware platforms

.

Advanced DBI tutorial

© Tim Bunce
August 2006

82

Web DBI - State-less-ness

! No fixed client-server pair
– Each request can be handled by a different process.

– So can't simply stop fetching rows from $sth when one page is complete and continue
fetching from the same $sth when the next page is requested.

– And transactions can't span requests.

– Even if they could you'd have problems with database locks being held etc.

! Need access to 'accumulated state' somehow:
– via the client (e.g., hidden form fields - simple but insecure)

! Can be made safer using encryption or extra field with checksum (e.g. MD5 hash)

– via the server:
! requires a session id (via cookie or url)
! in the database (records in a session_state table keyed the session id)

! in the web server file system (DBM files etc) if shared across servers

! Need to purge old state info if stored on server, so timestamp it
! See Apache::Session module

– DBI::ProxyServer + connect_cached with session id may suit, one day

.

Advanced DBI tutorial

© Tim Bunce
August 2006

83

Web DBI - Browsing pages of results

! Re-execute query each time then count/discard (simple but expensive)
– works well for small cheap results sets or where users rarely view many pages

– fast initial response, degrades gradually for later pages

– count/discard in server is better but still inefficient for large result sets

– count/discard affected by inserts and deletes from other processes

! Re-execute query with where clause using min/max keys from last results
– works well where original query can be qualified in that way

! Select and cache full result rows somewhere for fast access
– can be expensive for large result sets with big fields

! Select and cache only the row keys, fetch full rows as needed
– optimisation of above, use ROWID if supported, "select … where key in (…)"

! If data is static and queries predictable
– then custom pre-built indexes may be useful

! The caches can be stored...
– on web server, e.g., using DBM file with locking (see also ‘spread’)

– on database server, e.g., using a table keyed by session id

Advanced DBI tutorial

© Tim Bunce
August 2006

84

Web DBI - Concurrent editing

! How to prevent updates overwriting each other?
" You can use Optimistic Locking via 'qualified update':

update table set ...

where key = $old_key

and field1 = $old_field1

and field2 = $old_field2 and … for all other fields

! Check the update row count
" If it's zero then you know the record has been changed

– or deleted by another process

! Note
" Potential problems with floating point data values not matching

" Some databases support a high-resolution 'update timestamp' field that can be
checked instead

Advanced DBI tutorial

© Tim Bunce
August 2006

85

Web DBI - Tips for the novice

! Test one step at a time

– Test perl + DBI + DBD driver outside the web server first

– Test web server + non-DBI CGI next

! Remember that CGI scripts run as a different user with a different environment
– expect to be tripped up by that

! DBI $h->trace($level, $filename) is your friend

– use it!

! Use the perl "-w" and "-T" options.
– Always "use strict;" everywhere

! Read and inwardly digest the WWW Security FAQ:
– http://www.w3.org/Security/Faq/www-security-faq.html

! Read the CGI related Perl FAQs:
– http://www.perl.com/perl/faq/

! And if using Apache, read the mod_perl information available from:
– http://perl.apache.org

Other Topics

Bulk Operations

Security Tainting

Handling LOB/LONG Data

Callbacks

Advanced DBI tutorial

© Tim Bunce
August 2006

87

Bulk Operations

! Execute a statement for multiple values

$sth = $dbh->prepare("insert into table (foo,bar) values (?,?)");

$tuples = $sth->execute_array(\%attr, \@foo_values, \@bar_values);

– returns count of executions (even ones that failed) and not rows-affected

! Explicit array binding
$dbh->bind_param_array(1, \@foo_values, \%attr);

$dbh->bind_param_array(2, \@bar_values, \%attr);

$sth->execute_array(\%attr) # uses bind_param_array values

! Attribute to record per-tuple status:

ArrayTupleStatus => $array_ref elements are rows-affected or [err, errstr, state]

! Explicit array binding

$tuples = $sth->execute_for_fetch(sub {...}, \@tuple_status);

! Works for all drivers, but some use underlying db bulk API so are very fast!

Advanced DBI tutorial

© Tim Bunce
August 2006

88

DBI security tainting

! By default DBI ignores Perl tainting

– doesn't taint database data returned ‘out’ of the DBI

– doesn't check that parameters passed ‘in’ to the DBI are not tainted

! The TaintIn and TaintOut attributes enable those behaviours

– If Perl itself is in taint mode.

! Each handle has it's own inherited tainting attributes

– So can be enabled for particular connections and disabled for particular statements, for
example:

$dbh = DBI->connect(…, { Taint => 1 }); # enable TaintIn and TaintOut

$sth = $dbh->prepare("select * from safe_table");

$sth->{TaintOut} = 0; # don’t taint data from this statement handle

! Attribute metadata currently varies in degree of tainting

$sth->{NAME}; — generally not tainted

$dbh->get_info(…); — may be tainted if the item of info is fetched from database

.

Advanced DBI tutorial

© Tim Bunce
August 2006

89

Handling LONG/BLOB data

! What makes LONG / BLOB data special?
" Not practical to pre-allocate fixed size buffers for worst case

! Fetching LONGs - treat as normal fields after setting:
" $dbh->{LongReadLen} - buffer size to allocate for expected data

" $dbh->{LongTruncOk} - should truncating-to-fit be allowed

! Inserting LONGs
" The limitations of string literals (max SQL length, quoting binary strings)

" The benefits of placeholders

! Chunking / Piecewise processing not yet supported
" So you're limited to available memory

" Some drivers support blob_read()and other private methods

-

Advanced DBI tutorial

© Tim Bunce
August 2006

Intercepting DBI Method Calls

! An alternative to subclassing
" Added in DBI 1.49 - Nov 2005

" but not yet documented and subject to change

! Example:
$dbh->{Callbacks}->{prepare} = sub { ... }

" Arguments to original method are passed in.
" The name of the method is in $_ (localized).

" The Callbacks attribute is not inherited by child handle

! Some special ‘method names’ are supported:
connect_cached.new

connect_cached.reused 90

Advanced DBI tutorial

© Tim Bunce
August 2006

Fetching Multiple Keys

• fetchall_hashref() now supports multiple key columns

$sth = $dbh->prepare(“select state, city, ...”);

$sth->execute;

$data = $sth->fetchall_hashref([‘state’, ‘city’]);

$data = {

CA => {

LA => { state=>’CA’, city=>’LA’, ... },

SF => { state=>’CA’, city=>’SF’, ... },

},

NY => {

NY => { ... },

}

• Also works for selectall_hashref() 91

Advanced DBI tutorial

© Tim Bunce
August 2006

Unicode Tools

! Unicode problems can have many causes

! The DBI provides some simple tools to help:

! neat($value)
" Unicode strings are shown double quoted, else single

! data_string_desc($value)
" Returns ‘physical’ description of a string, for example:

UFT8 on but INVALID ENCODING, non-ASCII, 4 chars, 9 bytes

! data_string_diff($value1, $value2)
" Compares the logical characters not physical bytes

" Returns description of logical differences, else an empty string

! data_diff($value1, $value2)

" Calls data_string_desc and data_string_diff
" Returns description of logical and physical differences, else an empty string 92

Portability

A Holy Grail

(to be taken with a pinch of salt)

Advanced DBI tutorial

© Tim Bunce
August 2006

94

Portability in practice

! Portability requires care and testing - it can be tricky

! Platform Portability - the easier bit

– Availability of database client software and DBD driver

– DBD::Proxy can address both these issues - see later

! Database Portability - more tricky but the DBI offers some help

– Differences in SQL dialects cause most problems

– Differences in data types can also be a problem

– Driver capabilities (placeholders etc.)

– Database meta-data (keys and indices etc.)

– A standard test suite for DBI drivers is needed

! DBIx::AnyDBD functionality has been merged into the DBI

– can help with writing portable code, just needs documenting

-

Advanced DBI tutorial

© Tim Bunce
August 2006

95

SQL Portability - Data Types

! For raw information about data types supported by the driver:

$type_info_data = $dbh->type_info_all(…);

! To map data type codes to names:

$sth = $dbh->prepare(“select foo, bar from tablename”);

$sth->execute;

for my $i (0 .. $sth->{NUM_OF_FIELDS}) {

printf ”Column name %s: Column type name: %s”,

 $sth->{NAME}->[$i],

 $dbh->type_info($sth->{TYPE}->[$i])->{TYPE_NAME};

}

! To select the nearest type supported by the database:

$my_date_type = $dbh->type_info([SQL_DATE, SQL_TIMESTAMP]);

$my_smallint_type = $dbh->type_info([SQL_SMALLINT, SQL_INTEGER, SQL_DECIMAL]);

Advanced DBI tutorial

© Tim Bunce
August 2006

96

SQL Portability - SQL Dialects

! How to concatenate strings? Let me count the (incompatible) ways...
SELECT first_name || ' ' || last_name FROM table

SELECT first_name + ' ' + last_name FROM table

SELECT first_name CONCAT ' ' CONCAT last_name FROM table

SELECT CONCAT(first_name, ' ', last_name) FROM table

SELECT CONCAT(first_name, CONCAT(' ', last_name)) FROM table

! The ODBC way: (not pretty, but portable)

SELECT {fn CONCAT(first_name, {fn CONCAT(' ', last_name))}} FROM table

! The {fn …} will be rewritten by prepare() to the required syntax via a call to

$new_sql_fragment = $dbh->{Rewrite}->CONCAT(”…”)

! Similarly for some data types:
SELECT * FROM table WHERE date_time > {ts ’2002-06-04 12:00:00’} FROM table

$new_sql_fragment = $dbh->{Rewrite}->ts(’2002-06-04 12:00:00’)

! This 'rewrite' functionality is planned but not yet implemented

Advanced DBI tutorial

© Tim Bunce
August 2006

97

SQL Portability - SQL Dialects

! Most people are familiar with how to portably quote a string literal:

$dbh->quote($value)

! It’s now also possible to portably quote identifiers like table names:
$dbh->quote_identifier($name1, $name2, $name3, \%attr)

For example:

$dbh->quote_identifier(undef, 'Her schema', 'My table');

using DBD::Oracle: "Her schema"."My table”

using DBD::mysql: `Her schema`.`My table`

! If three names are supplied then the first is assumed to be a catalog name and special rules
may be applied based on what get_info() returns for SQL_CATALOG_NAME_SEPARATOR and

SQL_CATALOG_LOCATION. For example:
$dbh->quote_identifier(’link’, ’schema’, ’table’);

using DBD::Oracle: "schema"."table"@"link"

Advanced DBI tutorial

© Tim Bunce
August 2006

98

SQL Portability - Driver Capabilities

! How can you tell what functionality the current driver and database support?

$value = $dbh->get_info(…);

! Here’s a small sample of the information potentially available:

 AGGREGATE_FUNCTIONS BATCH_SUPPORT CATALOG_NAME_SEPARATOR CONCAT_NULL_BEHAVIOR CONVERT_DATE
CONVERT_FUNCTIONS CURSOR_COMMIT_BEHAVIOR CURSOR_SENSITIVITY DATETIME_LITERALS DBMS_NAME DBMS_VER
DEFAULT_TXN_ISOLATION EXPRESSIONS_IN_ORDERBY GETDATA_EXTENSIONS GROUP_BY IDENTIFIER_CASE
IDENTIFIER_QUOTE_CHAR INTEGRITY KEYWORDS LIKE_ESCAPE_CLAUSE LOCK_TYPES MAX_COLUMNS_IN_INDEX
MAX_COLUMNS_IN_SELECT MAX_IDENTIFIER_LEN MAX_STATEMENT_LEN MAX_TABLES_IN_SELECT MULT_RESULT_SETS
OJ_CAPABILITIES PROCEDURES SQL_CONFORMANCE TXN_CAPABLE TXN_ISOLATION_OPTION UNION …

! A specific item of information is requested using its standard numeric value

$db_version = $dbh->get_info(18); # 18 == SQL_DBMS_VER

! The standard names can be mapped to numeric values using:

use DBI::Const::GetInfo;

$dbh->get_info($GetInfoType{SQL_DBMS_VER})

Advanced DBI tutorial

© Tim Bunce
August 2006

99

SQL Portability - Metadata

! Getting data about your data:

$sth = $dbh->table_info(...)

– Now allows parameters to qualify which tables you want info on

$sth = $dbh->column_info($cat, $schema, $table, $col);

– Returns information about the columns of a table

$sth = $dbh->primary_key_info($cat, $schema, $table);

– Returns information about the primary keys of a table

@keys = $dbh->primary_key($cat, $schema, $table);

– Simpler way to return information about the primary keys of a table

$sth = $dbh->foreign_key_info($pkc, $pks, $pkt, $fkc, $fks, $fkt);

– Returns information about foreign keys

DBI::SQL::Nano

A
"smaller than micro"

SQL parser

Advanced DBI tutorial

© Tim Bunce
August 2006

101

DBI::SQL::Nano

! The DBI now includes an SQL parser module: DBI::SQL::Nano

– Has an API compatible with SQL::Statement

! If SQL::Statement is installed then DBI::SQL::Nano becomes an empty subclass
of SQL::Statement

– unless the DBI_SQL_NANO env var is true.

! Existing DBD::File module is now shipped with the DBI

– base class for simple DBI drivers

– modified to use DBI::SQL::Nano.

! A DBD::DBM driver now ships with the DBI

– An SQL interface to DBM and MLDBM files using DBD::File and DBI::SQL::Nano.

! Thanks to Jeff Zucker

Advanced DBI tutorial

© Tim Bunce
August 2006

102

DBI::SQL::Nano

! Supported syntax
DROP TABLE [IF EXISTS] <table_name>

CREATE TABLE <table_name> <col_def_list>

INSERT INTO <table_name> [<insert_col_list>] VALUES <val_list>

DELETE FROM <table_name> [<where_clause>]

UPDATE <table_name> SET <set_clause> [<where_clause>]

SELECT <select_col_list> FROM <table_name> [<where_clause>] [<order_clause>]

! Where clause
" a single "[NOT] column/value <op> column/value" predicate

" multiple predicates combined with ORs or ANDs are not supported

" op may be one of: < > >= <= = <> LIKE CLIKE IS

! If you need more functionality...
" Just install the SQL::Statement module

_

The Power of the Proxy,

 Flexing the Multiplex,

and a Pure-Perl DBI!

Thin clients, high availability ...

and other buzz words

Advanced DBI tutorial

© Tim Bunce
August 2006

104

DBD::Proxy & DBI::ProxyServer

! Networking for Non-networked databases

! DBD::Proxy driver forwards calls over network to remote DBI::ProxyServer

! No changes in application behavior

– Only the DBI->connect statement needs to be changed

! Proxy can be made completely transparent

– by setting the DBI_AUTOPROXY environment variable

– so not even the DBI->connect statement needs to be changed!

! DBI::ProxyServer works on Win32

– Access to Access and other Win32 ODBC and ADO data sources

! Developed by Jochen Wiedmann

Advanced DBI tutorial

© Tim Bunce
August 2006

105

A Proxy Picture

Application

DBI

RPC::pClient
Storabl
e

IO::Socket

DBD::Foo

DBI

DBI::ProxyServer

RPC::pServer
IO:Socket Storabl

e

Network

DBD::Proxy

Advanced DBI tutorial

© Tim Bunce
August 2006

106

Thin clients and other buzz words

! Proxying for remote access: "thin-client"
– No need for database client code on the DBI client

! Proxying for network security: "encryption"
– Can use Crypt::IDEA, Crypt::DES etc.

! Proxying for "access control" and "firewalls"
– extra user/password checks, choose port number, handy for web servers

! Proxying for action control
– e.g., only allow specific select or insert statements per user or host

! Proxying for performance: "compression"
– Can compress data transfers using Compress::Zlib

.

Advanced DBI tutorial

© Tim Bunce
August 2006

107

The practical realities

! Modes of operation

! Multi-threaded Mode - one thread per connection

" DBI supports threads in perl 5.6 but recent 5.8.x recommended

" Threads are still not recommended for production use with the DBI

! Forking Mode - one process per connection

" Most practical mode for UNIX-like systems

" Doesn’t scale well to large numbers of connections

" Fork is emulated on windows using threads - so see above

! Single Connection Mode - only one connection per proxy server process

" Would need to start many processes to allow many connections

" Mainly for testing

Advanced DBI tutorial

© Tim Bunce
August 2006

108

DBD::Multiplex

! DBD::Multiplex

– Connects to multiple databases (DBI DSN's) at once and returns a single $dbh

– By default, executes any method call on that $dbh on each underlying $dbh in turn

! Can be configured to

– modify (insert, update, …) only master db, select from one replica at random

– modify all databases but select from one ("poor man's replication")

– fallback to alternate database if primary is unavailable

– pick database for select at random to distribute load

– concatenate select results from multiple databases (effectively a 'union' select)

– return row counts/errors from non-select statements as select results
! one row for each underlying database

– May also acquire fancy caching, retry, and other smart logic in the future

! See: http://search.cpan.org/search?dist=DBD-Multiplex*

– developed by Thomas Kishel and Tim Bunce

– (was) currently undergoing a significant redevelopment

Advanced DBI tutorial

© Tim Bunce
August 2006

109

DBI::PurePerl

! Need to use the DBI somewhere where you can’t compile extensions?
" To deliver pure-perl code to clients that might not have the DBI installed?

" On an ISP that won’t let you run extensions?

" On a Palm Pilot?

! The DBI::PurePerl module is an emulation of the DBI written in Perl
" Works with pure-perl drivers, including DBD::...

AnyData, CSV, DBM, Excel, LDAP, mysqlPP, Sprite, XBase, etc.

" plus DBD::Proxy!

! Enabled via the DBI_PUREPERL environment variable:

0 - Disabled

1 - Automatically fall-back to DBI::PurePerl if DBI extension can’t be bootstrapped

2 - Force use of DBI::PurePerl

! Reasonably complete emulation - enough for the drivers to work well
" See DBI::PurePerl documentation for the small-print if you want to use it

Advanced DBI tutorial

© Tim Bunce
August 2006

110

Reference Materials

! http://dbi.perl.org/

– The DBI Home Page

! http://www.perl.com/CPAN/authors/id/TIMB/DBI_IntroTalk_2002.tar.gz

– An “Introduction to the DBI” tutorial

! http://www.perl.com/CPAN/authors/id/TIMB/DBI_WhatsNewTalk_200607.pdf

– Covers changes since “The Book” (DBI-1.14 thru DBI 1.52)

! http://www.perl.com/CPAN/authors/id/TIMB/DBI_AdvancedTalk_200608.tar.gz

– This “Advanced DBI” tutorial (updated each year)

! http://www.oreilly.com/catalog/perldbi/

– or http://www.amazon.com/exec/obidos/ASIN/1565926994/dbi

– “Programming the Perl DBI” - The DBI book, but based on DBI 1.14

! http://dbi.perl.org/donate

– Donate money to the DBI Development fund via The Perl Foundation

The end.

Till next year…

Meanwhile, please help me by filling out an evaluation form...

